Faseeh AHMAD

SKILLS

Specialised skills

- Autonomous systems, AI, and machine learning.
- Proficient in Python and C++ for robotics and AI development.
- Control theory and path planning with robots
- Hands-on experience with autonomous systems
- Integration testing of autonomous systems

Transferable skills

- Project management
- Taking initiative
- Problem-solving and analytical thinking
- Collaboration and teamwork
- Adaptability
- Critical thinking and innovation

TECHNICAL SKILLS

- **Programming Languages:** Python, C++, MATLAB
- Robotics Frameworks: ROS, SkiROS2, MuJoCo, DART, Gazebo, Pybullet
- Machine Learning Libraries: TensorFlow, PyTorch, Transformers, Scikit-learn, OpenAl, Gym, GPyTorch
- Version Control and Development Tools: Git, GitHub, GitLab, CMake, Docker
- Data Analysis and Visualization: NumPy, Pandas, Matplotlib, Seaborn
- Design and CAD Tools: SolidWorks, AutoCAD, PTC Creo, SolidEdge, OpenGL

CONTACT DETAILS

ABOUT ME

I am a dedicated and curious researcher with a real passion for autonomous systems, robotics, and artificial intelligence. My work revolves around developing intelligent robotic systems, especially in areas like robot learning, autonomy, and behavior modeling.

I have always been self-motivated and enjoy working independently, a strength I relied on throughout my PhD. But I also love collaborating with others, and I have had the chance to work with diverse teams on research papers and software projects. I am committed to doing quality work and often find myself going the extra mile to make sure everything is done right.

I approach my work with a mix of practicality and creativity. I balance working on shared projects with coming up with new, innovative ideas. I like to stay flexible and adaptable, which helps me tackle challenges and keep moving forward in fast-paced research environments

EDUCATION

2020– present	Ph.D. in Computer Science,
process	Lund University, Sweden
	Behavior Trees and Motion Generators (BTMG) for
	robotic skills, extended with machine learning
	and reinforcement learning.
	Supervisor: Prof. Volker Krueger.
2016–2019	M.Sc. in Mechatronics Engineering (3.91/4),
	Sabanci University, Turkey
	Thesis: "Robot Construction Problems as an
	application of answer set programming."
	Supervisors: Prof. Volkan Patoğlu and Prof. Esra Erdem.
2011-2015	B.Sc. in Mechatronics and Control Engineering (3.965/4),
	University of Engineering and Technology, Pakistan
	Thesis: "Construction of a Search and Rescue Robot."
	Supervisor: Assoc. Prof. Dr. Ali Raza.

WORK EXPERIENCE

2020-	Teaching Assistant.
present	3 . ,
-	Lund University, Sweden
	Courses:
	◊ EDAP01 - Artificial Intelligence, 2024
	 EDAN96 - Applied Machine Learning, 2023 IAS Intelligent Autonomous Systems, 2020 and 2021
	STAS - Intelligent Autonomous Systems, 2020 and 2021 Creducto Decourse for (Mastera)
2016-2019	Graduate Researcher (Masters),
	- Worked on solving computationally NP-hard
	problems using Answer Set Programming, including
	robot construction problems.
	- Conducted simulations with ROS gazebo and Pybullet
	physics engine, focusing on machine learning applications.
2016-2019	Teaching Assistant,
	Sabancı University, Turkey
	 Served as a teaching assistant for multiple courses, Calculus L 2016
	 ♦ Calculus I, 2010 ♦ Calculus II, 2016 and 2017
	 Probability and Statistics, 2017 and 2018
	- Responsible for solving questions in recitations,
	conducting quizzes, and grading exams.
2015	Teaching Assistant,
	Lahore University of Management Sciences, Pakistan
	- Focused of moustrial machines like CNC and lattle machines,
	- Conducted guizzes and facilitated students' grasp of
	theoretical concepts.

AWARDS AND ACHIEVEMENTS

2016-2019	Masters Full Scholarship with Stipend, Sabanci University, Turkey
	Full scholarship including a tuition waiver.
2011-2015	Gold Medalist,
	University of Engineering and Technology, Pakistan
	Ranked 1st in the department with the highest CGPA

LIST OF PUBLICATIONS

Ahmad, F., Mayr, M., Suresh-Fazeela, S., & Kreuger, V. (2024). Adaptable Recovery Behaviors in Robotics: A Behavior Trees and Motion Generators (BTMG) Approach for Failure Management. *arXiv preprint arXiv:2404.06129*.

Ahmad, F., Mayr, M., & Krueger, V. (2023). Learning to adapt the parameters of behavior trees and motion generators (btmgs) to task variations. In *Proceedings of the 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (pp. 10133–10140). IEEE.

Mayr, M., **Ahmad, F.**, & Krueger, V. (2023). Flexible and Adaptive Manufacturing by Complementing Knowledge Representation, Reasoning and Planning with Reinforcement Learning. In *Proceedings of the 2023 IROS Robotics & AI in Future Factory Workshop*.

Ahmad, F., Patoglu, V., & Erdem, E. (2023). Hybrid planning for challenging construction problems: An Answer Set Programming approach. *Artificial Intelligence*, *319*, 103902. Elsevier.

Ahmad, F., Mayr, M., Topp, E. A., Malec, J., & Krueger, V. (2022). Generalizing behavior trees and motion-generator (btmg) policy representation for robotic tasks over scenario parameters. In *Proceedings of the 2022 IJCAI Planning and Reinforcement Learning Workshop*.

Mayr, M., **Ahmad, F.**, Chatzilygeroudis, K., Nardi, L., & Krueger, V. (2022). Skillbased multi-objective reinforcement learning of industrial robot tasks with planning and knowledge integration. In *Proceedings of the 2022 IEEE International Conference on Robotics and Biomimetics (ROBIO)* (pp. 1995–2002). IEEE.

Mayr, M., **Ahmad, F.**, Chatzilygeroudis, K., Nardi, L., & Krueger, V. (2022). How to Set Up & Learn New Robot Tasks with Explainable Behaviors? In *Proceedings* of the European Robotics Forum.

Mayr, M., **Ahmad, F.**, Chatzilygeroudis, K., Nardi, L., & Krueger, V. (2022). Combining planning, reasoning and reinforcement learning to solve industrial robot tasks. In *Proceedings of the 2022 IROS Trends and Advances in Machine Learning and Automated Reasoning for Intelligent Robots and Systems Workshop*.

Mayr, M., Chatzilygeroudis, K., **Ahmad, F.**, Nardi, L., & Krueger, V. (2021). Learning of parameters in behavior trees for movement skills. In *Proceedings* of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 7572–7579).

Ahmad, F., Erdem, E., & Patoglu, V. (2019). A formal framework for robot construction problems: A hybrid planning approach. *arXiv preprint arXiv:*1903.00745.

Ahmad, F., Erdem, E., & Patoglu, V. (2018). Revisiting robot construction problems as benchmarks for task and motion planning. In *Proceedings of RSS*.

LANGUAGES

English: Fluent Swedish: Beginner (A1, A2) Urdu: Native

HOBBIES

Outdoor: Swimming, hiking, sports in general. *Indoor:* Reading books, board games, computer games.