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We study construction problems where multiple robots rearrange stacks of prefabricated 
blocks to build stable structures. These problems are challenging due to ramifications of 
actions, true concurrency, and requirements of supportedness of blocks by a surface or a 
robot and stability of the overall structure at all times. We propose a general elaboration 
tolerant method to solve a wide range of construction problems, based on the knowledge 
representation and reasoning paradigm of Answer Set Programming. This method not only 
(i) determines a stable final configuration of the structure, but also (ii) computes the order 
of manipulation tasks for multiple autonomous robots to build the structure from an initial 
configuration, (iii) while simultaneously ensuring the requirements of supportedness and 
stability at all times. We prove the soundness and completeness of our method with 
respect to these properties. We introduce a set of challenging construction benchmark 
instances, including construction of (uneven) bridges and overhangs, and discuss the 
usefulness of our framework over these instances. Furthermore, we perform experiments 
to investigate the computational performance of our hybrid method, and demonstrate the 
applicability of our method using a bimanual Baxter robot.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The construction industry relies on manual labor as its primary source of productivity, while robots promise to dramati-
cally improve the speed and quality of construction work by automating repetitive and labor intensive tasks [7]. Even though 
automation can improve the efficiency and the productivity of certain construction tasks, the design of the structure to be 
built, planning of the robot motions, and a proper ordering of robot actions are still decided manually in these approaches. 
Robotics will have a major impact on the construction industry, if these reasoning tasks can also be performed automati-
cally. For instance, it would be very beneficial if a group of autonomous search and rescue robots could automatically build 
bridges in a disaster zone, by rearranging stacks of prefabricated building materials that are accessible to them.

We view construction problems as hybrid planning problems where discrete/logical task planning is combined with con-
tinuous/probabilistic feasibility checkers: find a plan (i.e., a sequence of feasible actions) to obtain a final stable configuration 
of prefabricated objects satisfying some goal conditions, from a given initial configuration.
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Fig. 1. Ramifications involved in construction problems.

1.1. Motivating challenges

Robot construction problems involve several challenges from the perspective of planning, knowledge representation and 
reasoning, and robotics. These changes include (i) representation of sophisticated ramifications of actions, (ii) reasoning 
about global constraints to eliminate spurious structures during planning, (iii) integrating low-level feasibility checks into 
planning to ensure stability of constructions and feasibility of plan executions, and (iv) elaboration tolerant representation 
of variations of robot construction problems.

Recursive ramifications Construction problems involve a variety of sophisticated ramifications that are challenging to repre-
sent.

For instance, consider Fig. 1(a), where a robot places a large block l on top of a small block b. As a direct effect of this 
action, l becomes on b. As a ramification of this action, l is located on top of other small blocks close to b, such as c and d.

Let us now consider Fig. 1(b), where a robot is moving a subassembly of blocks l, d, e and f from one location b to 
another location c. As a direct of effect of this action, the base block l becomes on c. As ramifications of this action, block 
l is not on b anymore, none of the blocks included in the subassembly are supported by b anymore, and all blocks in the 
subassembly are supported by c now.

Representing these ramifications require concepts that are recursively defined. For instance, in the first example, to 
identify which blocks are close to b and will become under l, the relative positions of blocks are not sufficient. It is necessary 
to define the global positions of blocks from their relative positions; such a definition is recursive. In the second example, 
it is necessary to define which blocks are supported by which other blocks in a construction, like a subassembly being 
carried; such a definition is recursive as well. The capability of defining recursive concepts, like the transitive closure of 
“being immediately on top of another block”, is needed for representing sophisticated ramifications.

Representing such ramifications is challenging, e.g., for PDDL-based planning: Thiebaux et al. [93, Theorem 3] prove that 
“Unless EXPTIME = PSPACE, there is no compilation scheme from PDDLX (even restricted to DATALOG axioms) to PDDL 
preserving plan size polynomially.”

Global recursive constraints Global state constraints are necessary to eliminate spurious configurations of blocks, such as un-
supported flying blocks or circular configurations of blocks. These constraints are necessary to ensure soundness of solutions, 
but are very challenging to model, since recursive concepts are required to define such spurious configurations.

Although some global constraints are supported by PDDL (e.g., state trajectory constraints in PDDL3 [43]), global recursive 
constraints as mentioned in the examples above are not supported by the current PDDL-based planners, to the knowledge 
of the authors and the experts they have consulted.2 For instance, in the blocks world, suppose that we define above/2
recursively (as the transitive closure of on/2 predicate) as a derived predicate, as suggested by Edelkamp and Hoffman [22]
and by Thiebaux et al. [93]. Then expressing the global constraint “for every block x, x is not above x” is not possible 
in PDDL. As the curious reader may consider, one can get around this problem by encoding all global constraints in the 
preconditions of each operator and in the goal conditions; such a method is suggested by Haslum et al. [50] to compile a 
type of state constraints into action descriptions. However, this method leads to a domain description that is not elaboration 
tolerant3: a modification of a global constraint requires updating the preconditions of all actions and the goal condition.

Low-level feasibility checks For robotic applications, feasibility of computed plans is a pre-requisite such that these plans can 
be used for real-life implementations. Along these lines, integration of stability checks into abstract planning is required to 
obtain feasible construction plans.

For instance, for a feasible construction plan, based on an abstract description of goal conditions, stable goal configu-
rations should be determined for planning. In addition to the stable goal configuration, at every state reached during the 
execution of a plan, the structure being constructed should be ensured to be stable. Furthermore, during each transition 

2 Personal communication, Stefan Edelkamp and Robert Mattmueller, March 2019.
3 According to McCarthy [67] (http://jmc .stanford .edu /articles /elaboration .html), a formalism is elaboration tolerant to the extent that it is convenient to 

modify a set of facts expressed in the formalism to take into account new phenomena or changed circumstances.
2
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from one state to another, it should be guaranteed that the structure stays stable. Therefore, the robot construction prob-
lems cannot be addressed using solely a task planner, but necessities proper use of feasibility checks together with the 
planner. While essential for real-life applicability, it is challenging to combine task planning studied over discrete domains, 
with feasibility checks performed in continuous domains.

Elaboration tolerance For real-world applications, the flexibility of methods is important for the users to be able to address 
different variations of the problem. In robot construction, there exists a wide variety of problems that involve construction 
and transfer of subassemblies, use scaffolding and counterweights to temporarily balance structures, build overhangs and 
bridges that connect two surfaces. Each of these construction problems need to consider and model new phenomena. For 
instance, involving subassemblies requires a new type of stability check (i.e., stability of a construction being held by the 
robot), whereas building bridges requires definition of connectivity of both sides (i.e., of a river). It is challenging to represent 
the construction problem in such a general way that is tolerant to all these elaborations, as much as possible.

Elaboration tolerance is an important challenge in knowledge representation and reasoning [67]. Having a flexible frame-
work that can address variations of a problem is also important for robotic applications, such as the robot construction 
problems.

1.2. Our contributions

We propose a formal hybrid planning framework for robot construction problems, where multiple autonomous robots 
rearrange stacks of prefabricated blocks to build stable structures, including stacks, bridges or overhangs. This framework can 
address all of the challenges discussed above, thanks to the underlying knowledge representation formalism and efficient 
automated reasoners of Answer Set Programming (ASP) [9]. Our ASP-based framework

• provides an elaboration-tolerant representation for a wide range of construction problems, utilizing nonmonotonicity 
(e.g., for common sense law of inertia) and recursive definitions (e.g., transitive closure),

• determines a stable final configuration of blocks, utilizing semantic attachments in logical formulas (e.g., by external 
atoms), and

• computes the order of manipulation tasks for multiple robots to build it from an initial configuration, in the spirit of 
hybrid planning where discrete/logical task planning is combined with continuous/probabilistic feasibility checkers (e.g., 
simulation-based physics engines).

Our hybrid framework is general and flexible, in the sense that many variations of construction problems, including 
optimal stacks and bridges, can be handled with the simplest kind of elaboration, i.e., the addition of new formulas [67]. 
It is interesting to note that our framework also provides a solution to the infamous maximum overhang puzzle [47,76,75,
77]—the problem of finding maximum overhangs with counterweights.4

Our ASP-based formal framework for robot construction problems prevents nonsensical configurations, like circular con-
figuration of blocks (Proposition 3) or flying blocks (Proposition 4), and undesired occurrences of some actions concurrently 
(Proposition 5), like picking a block while placing another block on top of it.

It solves the ramification problem through recursive definitions of global locations of blocks from their relative locations 
(Proposition 1), and definitions of empty spaces not occupied by any blocks (Proposition 2). Our ASP-based formal frame-
work also guarantees desired properties, like the stability of a construction (Proposition 6) and the connectedness of two 
sides of a bridge (Proposition 7).

In addition to these soundness results, our ASP-based framework guarantees completeness by ensuring the computation 
of all valid construction plans subject to such properties and constraints and whose lengths are less than a given maximum 
makespan (Proposition 8).

To investigate the applicability of our hybrid ASP-based framework to solve a variety of problems, we introduce a diverse 
set of challenging robot construction benchmark instances (Figs. B.27–B.47, Appendix B) where multiple autonomous robots 
rearrange stacks of prefabricated blocks to build stable structures, including stacks, bridges or overhangs by making use 
of counterweights, scaffolding, subassemblies, and true concurrency of manipulations. Such a benchmark set of different 
types of construction is also a useful contribution to advance studies on robot construction problems, hybrid planning, and 
knowledge representation.

Using these benchmarks, experimental evaluations are performed to understand the scalability of our hybrid ASP-based 
method, and the effect of granularity of goal specification and the integration of stability checks on computational efficiency 
in terms of time.

Furthermore, to verify the executability of the plans computed by our method and to show their applicability with real 
robots, we perform dynamic simulations and physical implementations of several benchmark scenarios.

4 A relatively recent solution [75,77] to this 150 year old puzzle, honored with the prestigious David P. Robbins Prize in mathematics, has introduced the 
use of blocks as counterbalance to improve upon the well-established solution.
3
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1.3. Organization of the manuscript

The rest of the paper is organized as follows. Section 2 defines the robot construction problem, Section 3 provides 
illustrative examples, while Section 4 presents the formal representation of the problem in Answer Set Programming and 
provides the soundness and completeness results. Section 5 details integration of stability checks for hybrid planning and 
presents examples demonstrating the importance of such integration for hybrid planning of construction problems. Section 6
discusses the results of experimental evaluations to investigate the computational performance of our hybrid ASP-based 
method, as the input size and the granularity of goal specification change, and when the integration of stability checks 
is disabled. Section 7 discusses several challenging benchmark problems and demonstrates applicability of the proposed 
approach through executions with a bimanual robot. Section 8 presents a comprehensive review of related works. Section 9
concludes the study and presents future research directions. Detailed proofs are presented in Appendix A, while challenging 
benchmarks problems and their solutions are given in Appendix B.

2. Robot construction problems

A robot construction problem comprises

• a final stable configuration of different types of prefabricated blocks stacked on each other on the ground, that satisfies 
some goal conditions, and

• a feasible stack rearrangement plan to obtain that final configuration from a specified initial configuration of the blocks.

Figs. 5, 6 and 19 present such stable final configurations, together with feasible construction plans to achieve them.
Initially, regular shaped blocks are stacked on the ground/table as specified by the problem instance. The ground consists 

of a set of flat surfaces (disconnected surfaces are required for bridges) and each surface has limited space for construction.
We use unit spaces, within a discrete model of the problem, to identify how much space is available on a block/surface 

and where to locate a block. A single unit space is set to be equal to the size of the smallest block. To describe our 
approach, we consider three types of prefabricated blocks in the form of regular-shaped blocks: small blocks with one unit 
space, medium blocks with three unit spaces, and large blocks with five unit spaces. We assume that the blocks are placed 
in the same row, i.e., other orientations are not considered. We also assume that the width and the height of all the blocks 
are the same, while their weights and mass distributions may vary based on the problem instance. These assumptions allow 
us to model discrete/logical task planning in two-dimensional space, while continuous/probabilistic feasibility checks are 
conducted in three-dimensional space where each block is considered as a three-dimensional object with a predefined mass 
distribution.

We consider construction tasks performed by multiple autonomous robots, such as bimanual manipulators. The robots 
can pick and place blocks. We assume that the orientations of the blocks remain the same during the plan, so that the 
robots do not have to rotate the blocks.

Our approach does not rely on any assumptions about the weight distribution of the blocks. For clarity of presentation 
and without loss of generality, we only focus on the stability of the structures as the feasibility check performed in the 
continuous domain. In particular, we ensure the stability of each step of the plan by testing it with a physics engine. Other 
feasibility checks, such as motion planning queries, reachability and graspability checks for manipulation actions, can be 
similarly integrated to our hybrid reasoning framework [31,81,71,79], as illustrated with an example in Section 4.1.

The goal conditions can be described in an abstract manner to capture important aspects of specific structures. For 
instance,

- for a simple stack, height can be maximized,
- for a bridge, the ground on one side should be connected to the one on the other side,
- for an overhang, constraints can be provided about the desired length of the overhang.

If necessary, further goal conditions may be specified in an abstract manner (e.g., lightweight blocks should be placed on 
top of heavy ones), with more details (e.g., blocks 3 and 4 must be placed on block 5), or even with further details (e.g., 
block 1 must be placed on block 2, ensuring that unit space 1 of block 1 is on unit space 3 of block 2).

In general, there exist multiple final configurations that satisfy the goal conditions, but only the ones that are stable and 
that can be achieved with a feasible construction plan are of interest. In that sense, the robot construction problem not 
only aims for a plan that reaches a goal configuration, but also ensures that this configuration and all intermediate steps 
are stable. Under these assumptions, we model the robot construction problems as a hybrid planning problem.

Construction problems are challenging from the perspective of planning, since they involve incorporation of preexisting 
structure into the final design, pre-assembly of movable substructures, and use of extra blocks as temporary supports or 
counterweights during construction. These problems are challenging from the perspective of geometric reasoning as well, 
since they these involve stability checks of complex structures.
4
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Fig. 2. Stable construction of asymmetric bridges: Given an initial state (left figure), a stable bridge is constructed (right figure).

Note that construction problems inherit the intractability of elementary Blocks World (EBW) problems, as the latter is a 
specific type of construction problems. Thanks to Gupta and Nau [46], we know that, given an EBW problem and a positive 
integer L, it is NP-complete to decide the existence of a plan whose makespan is less than or equal to L [46, Theorem B.5].

Consider a variation of EBW (called VLBW) where the table can hold on a limited number of blocks, the blocks are of 
different sizes, and a large block cannot be placed on a smaller block. Given a VLBW problem, it is possible that the shortest 
plan has exponential length [46, Theorem E.1]. In that sense, if we consider a stability checker that returns “unstable” when 
a large block is placed on a smaller block, then it is possible that a construction problem (like Tower of Hanoi) has an 
exponential length shortest plan.

3. Illustrative examples

Consider the robot construction problems shown in Fig. 2 specified by their initial states; in each problem, the goal is to 
build a stable bridge. The construction area is limited, and an upper bound is given on the length of a plan. The problem 
shown in Fig. 2(b) further requires construction to start from the left side and proceed towards the right side. Solutions to 
these bridge construction problems require

• finding stable goal configurations of prefabricated blocks so that they connect the two sides (e.g., as in the final states 
shown in Fig. 2),

• handling ramifications of actions (e.g., when C4 is placed on S7, it becomes on S5 as an indirect effect as in Fig. 2(b)),
• construction and incorporation of subassemblies (e.g., the subassembly of S4, S3, M3 in the final state shown in 

Fig. 2(a)),
• using blocks or subassemblies as counterweights (e.g., all the small blocks and C4 in the final state in Fig. 2(b)), and
• maintaining stability of the structure at all times.

Construction of overhangs (Figs. 3 and 19), symmetric bridges (Fig. 4), and other interesting structures (Figs. 5 and 6) 
demonstrate further challenges, such as

• the need for concurrency of actions (e.g., moving S1 and S2 onto L1 at the same time as in Fig. 6(b)).

4. Modeling robot construction problems

We use Answer Set Programming (ASP) [9]—a form of knowledge representation and reasoning paradigm in AI—for 
hybrid planning. The idea is to represent the hybrid action domain by a set of logical formulas (called “rules”), whose 
models (called “answer sets” [41]) correspond to plans and can be computed by special implemented systems called answer 
set solvers, like dlvhex [25], making calls to relevant feasibility checkers as needed.
5
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Fig. 3. Stable construction of overhangs: Given an initial state (left figure), a stable overhang of a given size is constructed (right figure).

Fig. 4. Stable construction of symmetric bridges: Given an initial state (left figure), a stable bridge is constructed (right figure).

4.1. Formulas in ASP

We consider disjunctive ASP rules of the form:

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm

where m, k ≥ 0, each αi is a literal, and each βi is a literal or an external literal. Here, α1 ∨ · · · ∨ αk is called the head, 
β1, . . . , βn, not βn+1, . . . , not βm is called the body of a rule. Intuitively, a rule expresses that if all βi (1 ≤ i ≤ n) holds but 
no βi (n + 1 ≤ i ≤ m) holds then some αi (1 ≤ i ≤ k) holds as well. When k = 0, the rule is a constraint; when n = m = 0, it 
is a fact.
6
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Fig. 5. Plans for two challenging robot construction scenarios that includes a) manipulation of subassemblies and b) use of counterweights. In these 
examples, the initial states are specified completely in detail (e.g., block S1 is on the unit space 3 of block L1), while the goal states are specified partially 
in an abstract way (e.g., blocks S1 and S3 are on block L1).

For instance, the following rule expresses that pick actions may occur at any time in a plan:

pick(a,b, t) ∨ ¬pick(a,b, t) ←
where a denotes a gripper of a robot, b denotes a block to be picked up, and t is a time step. Note that pick(a, b, t) ∨
¬pick(a, b, t) is not a tautology as in classical logic, but expresses a choice of occurrence for an action. This is due to the 
nonmonotonic semantics of ASP formulas.

An external atom &g[Y1, . . . , Yn](X1, . . . , Xm) is defined by its name g , input Y1, . . . , Yn and output X1, . . . , Xm . Intu-
itively, g takes the input Y1, . . . , Yn , passes it to an external computation (like a stability checker), and conveys the results 
X1, . . . , Xm into the rules in the spirit of semantic attachments in theorem proving [100]. Different from the semantic at-
tachments in planning [21,53], the arguments Y1, . . . , Yn passed to external computation do not need to be object constants 
or variables; they can be predicate extensions.

For instance, the following rule prevents the occurrence of a pick action in a plan, if the block that the robot wants to 
pick is not reachable:

← pick(a,b, t),not &reachable[on,a,b]().
Here the external computation reachable takes as arguments the arm a, the block b, and the extension of the predicate on, 
which describes the location of every block in the environment. Given this information, reachable applies a motion planning 
7
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Fig. 6. Plans for two challenging robot construction scenarios that includes a) use of scaffolds and b) true concurrency of actions. In these examples, the 
initial states are specified completely in detail (e.g., block S1 is on the unit space 1 of the table), while the goal states are specified partially in an abstract 
way (e.g., blocks S1 and S3 are on block L1).

algorithm to check whether the arm a can reach the block b without colliding with any other objects in the environment. 
External atoms allow us to embed feasibility checks into task planning [31]. dlvhex evaluates external atoms as needed [23].

ASP offers some useful constructs to concisely represent knowledge. For instance, aggregate atoms are expressions of the 
form [34]:

s1 ≺1 α{t1, ..., tn : β1, ..., βm} ≺2 s2.

Here ti are terms, βi are literals, α is a function that evaluates the numerical value of the aggregate, and ≺1 and ≺2 are 
predicates that compare the resulting value with the terms s1 and s2. An aggregate atom holds if the comparison is true 
with respect to evaluating α on the tuples 〈t1, ..., tn〉 for which β1, ..., βm hold. For instance, the aggregate atom
8
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Occurrences/nonoccurrences: Pick actions may occur at any time.

pick(a,b, t) ∨ ¬pick(a,b, t) ←
Direct effects: After a robot arm a picks a block b, the robot arm is holding that block.

holding(a,b, t + 1) ← pick(a,b, t)

Preconditions: A robot arm a cannot pick a block b if it is holding it or another block, or if another robot arm is holding 
it.

← pick(a,b, t),holding(a,b′, t)
← pick(a,b, t),holding(a′,b, t) (a �= a′)

Fig. 7. ASP formalization � of construction problems: Occurrences/nonoccurrences, direct effects and preconditions of pick actions.

#count{b : box(b),holding(a,b, t)} = 0

describes that the number of boxes b that a robot is holding with its arm a at time step t is 0.
Weak constraints are expressions of the following form [10]:

∼←Body(t1, ..., tn)[w@p, t1, ..., tn].
Here, Body(t1, ..., tn) is a formula (as in the body of a rule) with the terms t1, ..., tn . Intuitively, whenever an answer set 
for a program satisfies Body(t1, ..., tn), the tuple 〈t1, ..., tn〉 contributes a cost of w to the total cost function relative to 
its priority p. The ASP solver tries to find an answer set with the minimum total cost. For instance, the following weak 
constraint

�←− blockHeight(b,h, T ). [h@1,b]
instructs dlvhex to compute an answer set where the total height of every block b in a tower at the end of the plan, at 
time step T , is minimized.

4.2. Fluents and actions

The objects in a robot construction domain consist of a set A of robotic grippers, a set B of blocks, and a set L of 
locations (B ⊆ L). The positions on each location l ∈ L (and thus each block b ∈ B) are represented by its unit spaces 
1, 2, ..., nl for some positive integer nl that denotes the length of that location. Moreover, nonnegative integers 0, 1, ..., T − 1
describe time steps for a task plan, where T specifies the maximum makespan (i.e., the length) of a plan.

In the following, the schematic variable t ranges between 0 and T , a and a′ range over all grippers, b and b′ range over 
all blocks, l and l′ range over all locations (e.g., blocks and Table), and u, u′ , v and v ′ range over relevant unit spaces.

We consider two fluents to describe the states of the world:

- holding(a, b, t) (robot’s gripper a is holding block b at step t of the plan), and
- on(b, v, l, u, t) (box b is at location l at time step t , in such a way that the unit space v of b is on the unit space u on l).

We consider two actions:

- pick(a, b, t) (pick the block b with the gripper a at step t) and
- place(a, l, t) (place the block being held by the gripper a, on the location l at step t) with the attribute placeOn(a, b, v, l,

u, t) (place the block b being held by the gripper a such that the unit space v of b is on the unit space u of l).

Here, the variable t ranges between 0 and T −1.
Using these fluent and action constants, the preconditions and direct effects of pick and place actions, and the com-

monsense law of inertia can be formalized in ASP (shown in Figs. 7–9) following the guidelines described by Erdem et 
al. [30,26]. This formulation considers pick and place actions from a surface, and takes into account the following desired 
conditions about the nonexecutability of pick and place actions:

• A robot arm cannot pick a block if it is already holding it or another block.
• A robot arm cannot pick a block if another robot arm is holding it.
• A robot arm cannot place a block (onto any location) if it is not holding any blocks.
• A robot arm cannot place (any block) onto a block that is being held by another robot arm.
9
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Occurrences/nonoccurrences: Place actions may occur at any time.

placeOn(a,b, v, l, u, t) ∨ ¬placeOn(a,b, v, l, u, t) ←
place(a, l, t) ← placeOn(a,b, v, l, u, t)

Direct effects: After a robot places unit v of a block b that it is holding, onto unit u of a location l, the unit v of block 
b becomes on the unit u of location l.

on(b, v, l, u, t + 1) ← placeOn(a,b, v, l, u, t),holding(a,b, t)

Preconditions: A robot cannot place onto location l if it is not holding any blocks.

← place(a, l, t),#count{b : box(b),holding(a,b, t)} = 0

A robot arm a cannot place onto a block b if another robot arm is holding b.

← place(a,b, t),holding(a′,b, t) (a �= a′)

Fig. 8. ASP formalization � of construction problems: Occurrences/nonoccurrences, direct effects and preconditions of place actions.

If a block b is (resp. not) at a location l at time step t then b remains to be (resp. not) at l at the next step t + 1 by 
default (i.e., unless some action changes its location directly/indirectly).

on(b, v, l, u, t + 1) ← not ¬on(b, v, l, u, t + 1),on(b, v, l, u, t)
¬on(b, v, l, u, t + 1) ← not on(b, v, l, u, t + 1),¬on(b, v, l, u, t)

If a block is (resp. not) being held then it remains to be (resp. not) held at the next state by default.

holding(a,b, t + 1) ← not ¬holding(a,b, t + 1),holding(a,b, t)
¬holding(a,b, t + 1) ← not holding(a,b, t + 1),¬holding(a,b, t)

Fig. 9. ASP formalization � of construction problems: Commonsense law of inertia.

If a block is on some location then the block is not being held by a robot, and vice versa.

onAux(b, l, t) ← on(b, v, l, u, t)
¬holding(a,b, t) ← onAux(b, l, t)
¬on(b, v, l, u, t) ← holding(a,b, t)

Further uniqueness conditions on locations of blocks:

¬on(b, v, l′, u′, t) ← on(b, v, l, u, t) (〈l, u〉 �= 〈l′, u′〉)
¬holding(a,b′, t) ← holding(a,b, t) (b �= b′)
¬holding(a′,b, t) ← holding(a,b, t) (a �= a′)

Fig. 10. ASP formalization � of construction problems: Straightforward negative ramifications of pick and place actions.

In the following, let us discuss how the further challenges of robot construction problems are addressed using ASP.

4.3. Ramifications

The pick and place actions of a robot have many interesting indirect effects (or ramifications), as also considered in the 
Blocks World domain. Some of these ramifications are quite straightforward, as shown in Fig. 10. For instance, if a block b
is placed on some location l, then, as a direct effect of this action, b becomes on l; as an indirect effect, the robot’s gripper 
becomes empty:

¬holding(a,b, t) ← onAux(b, l, t).
10
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Positive ramifications (Fig. 13):

on(b, v + i, l, u + i, t) ← on(b, v, l, u, t)
(1 ≤ i ≤ min{size(b)−v, size(l)−u})

on(b, v − j, l, u − j, t) ← on(b, v, l, u, t) (1 ≤ i ≤ min{v, u})
Positive ramifications (Fig. 14):

on(b, v,b′, u, t) ← globalPos(b, v,h, x, t),globalPos(b′, u,h−1, x, t) (h > 0)

Negative ramifications (Fig. 15):

¬on(b, v + i, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v + i,h, xi, t),
empty(h−1, xi, t) (size(b)−v > size(l)−u, size(l)−u < i ≤ size(b))

¬on(b, v − j, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v − j,h, x j, t),
empty(h−1, x j, t) (min{size(b)−v, size(l)−u} ≤ j < v)

Fig. 11. ASP formalization � of construction problems: Ramifications of placing a long block on another block, as illustrated in Figs. 13–15.

Global positions of locations, defined vertically:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t) (1 ≤ x ≤ nT able)

globalPos(b, v,h, x, t) ← globalPos(b′, u,h−1, x, t),on(b, v,b′, u, t) (h > 1)

Global positions of locations, defined horizontally:

globalPos(b, v+1,h, x+1, t) ← globalPos(b, v,h, x, t) (v<size(b))

globalPos(b, v−1,h, x−1, t) ← globalPos(b, v,h, x, t) (v>1, x>1)

Empty spaces above the table:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0)

Fig. 12. ASP formalization � of construction problems: Auxiliary definitions for global positions and empty spaces.

Here, onAux is a projection of on. Furthermore, if the unit space v of block b is on the unit space u of location l, then (b, v)

is not on any other unit (l′, u′).

¬on(b, v, l′, u′, t) ← on(b, v, l, u, t)

where the variable u and u′ range over the unit spaces of l, and l �= l′ or u �= u′ .
If a robot’s gripper a picks a block b, then as its direct effect a is holding b; as an indirect effect, b is not on any block 

or the table:

¬on(b, v, l, u, t) ← holding(a,b, t).

Furthermore, as indirect effects, the gripper a is not holding any other blocks b′ (b �= b′):

¬holding(a,b′, t) ← holding(a,b, t)

and no other gripper a′ is holding b (a �= a′):

¬holding(a′,b, t) ← holding(a,b, t)

There are further ramifications of pick and place actions, pertaining to the robot construction problems that are not 
considered in the Blocks World.

An interesting positive ramification occurs (Fig. 13) when a unit space v of a large block b is placed on a unit u of 
another block l: the block b occupies as many unit spaces as its size allows on l. In particular, block b occupies the right 
part of l, starting from the unit space u of l:

on(b, v + i, l, u + i, t) ← on(b, v, l, u, t) (1)
11
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Fig. 13. As indirect effects of placing unit v of b on unit u of l, unit v + i (resp. v − j) of b is on unit u + i (resp. u − j) of l.

Fig. 14. As indirect effects of placing b on l, unit v of b becomes on unit u of b′ , and unit v + i (resp. v − j) of b becomes on unit u + i (resp. u − j) of b′ .

Fig. 15. As indirect effects of placing unit v of b on unit u of l, unit v + i (resp. v − j) of b is on unit u + i (resp. u − j) of l.

where i ranges between 1 and min{size(b) − v, size(l) − u}, and size(block) denotes the length of block. Similarly, block b
occupies the left part of l starting from the unit space v of l:

on(b, v − j, l, u − j, t) ← on(b, v, l, u, t) (2)

where j ranges between 1 and min{v, u}.
Another interesting positive ramification occurs when a large block b is placed on top of block l (Fig. 14): block b is also 

placed on another block b′ that is not too far from block l.
Such a sophisticated ramification is represented as follows. Suppose that atoms of the form globalPos(b, v, h, x, t) express 

that the unit space v of block b at time step t is globally located at (h, x) (i.e., x units to the right of the leftmost side of 
the table, and h units above the surface of the table). After placing block b on block l, if the unit space v of b and the unit 
space u of b′ are both globally located horizontally x units from the leftmost side of the table, and b and b′ are globally 
located vertically h and h′ units above the table, respectively, then as a ramification the unit v of b is on the unit u of b′ . 
This ramification is described by the following rule:

on(b, v,b′, u, t) ← globalPos(b, v,h, x, t),globalPos(b′, u,h−1, x, t) (h > 0)

An interesting negative ramification occurs (Fig. 15) when a large block b is placed on another block, and some parts of 
b are not on any location as they happen to be over an empty space.

Such a sophisticated ramification is represented as follows. Suppose that atoms of the form empty(h, x, t) express that 
the unit space globally located at (h, x) is empty (i.e., not occupied by any block) at time step t .

After placing unit space v of a block b on unit space u of another block l, if the unit space v + i of b is globally located 
at (h, xi) and the global position (h − 1, xi) is empty, then as a ramification the unit v + i of b is not on any location. This 
negative ramification is described by the following rule:

¬on(b, v + i, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v + i,h, xi, t),
empty(h − 1, xi, t)

(3)

where size(b)−v > size(l)−u, i ranges between size(l)−u+1 and size(b), and h>1.
12
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Similarly, a negative ramification occurs if the unit space v − j of b is globally located at (h, x j) and the global position 
(h − 1, x j) is empty, and is described by the following rule:

¬on(b, v − j, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v − j,h, x j, t),
empty(h − 1, x j, t)

(4)

where j ranges between min{size(b)−v, size(l)−u} and v−1, and h>1.
We define global locations of blocks recursively. For every time step t and for every block b (within a tower) that is 

located x units to the right of the leftmost side of the table, first we recursively define the height h of every unit v of 
block b:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t) (1 ≤ x ≤ nT able)

globalPos(b, v,h, x, t) ← globalPos(b′, u,h−1, x, t),on(b, v,b′, u, t) (h>1).
(5)

Next, we recursively define the locations of other units of block b horizontally to the right and to the left of that tower:

globalPos(b, v+1,h, x+1, t) ← globalPos(b, v,h, x, t) (v<size(b))

globalPos(b, v−1,h, x−1, t) ← globalPos(b, v,h, x, t) (v>1)
(6)

Note that the recursive definition of globalPos characterizes a form of reachability where immediate-connectedness be-
tween a block unit 〈b, v〉 and a block/table unit 〈b′, v ′〉 is understood as one of the following conditions:

(i) 〈b, v〉 is located immediately on 〈b′, v ′〉 (specified by atoms of the form on(b, v, b′, v ′, t)),
(ii) b = b′ and v ′ = v + 1, or

(iii) b = b′ and v ′ = v − 1.

The last two conditions describe horizontal immediate-connectedness of unit spaces of a block.
At every time step t , for every table unit 〈Table, x〉, the rules (5) ∪ (6) identify the block units 〈b, v〉 reachable from 

〈Table, x〉 at time t relative to such immediate-connectedness relation, and furthermore define their global locations recur-
sively with respect to their height h from the table and the distance x from the leftmost side of the table.

Proposition 1. Let �′ be the disjunctive program shown in Figs. 7–11. Then, for every time step t and for every block b supported by 
the table, rules (5) ∪ (6), when added to �′ , correctly describe the global position of b at time t with respect to its height h from the 
table and the distance x from the leftmost side of the table.

The proof of Proposition 1 follows from the observation that the disjunctive program �′ can be equivalently transformed 
into a nondisjunctive program (Theorem 1 of [28]), �′ does not contain atoms of the form globalPos(b, v, h, x, t) in the 
heads of its rules, and the correctness of the recursive reachability definition (see Lemma 2), as explained in Appendix A.

After defining the global positions, the empty spaces above the table are defined as the global positions (h, x) that are 
not occupied by any blocks:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0). (7)

Proposition 2. Let �′ be the disjunctive program shown in Figs. 7–12, except for rules (7). Then, for every time step t and for every 
block b supported by the table, rules (7), when added to �′, correctly describe the global positions (h, x) of empty spaces at time t.

The proof of Proposition 2 follows from the observation that the disjunctive program �′ can be equivalently transformed 
into a nondisjunctive program (Theorem 1 of [28]), and does not contain atoms of the form empty(h, x, t) in the heads of 
its rules, as explained in Appendix A.

Remark. In our experiments, we assume that there is no block overhanging from the leftmost side of the table as the ASP 
solver dlvhex does not allow negative integers. To ensure this assumption, we add further constraints as shown below.

← on(b, v,Table, x, t) (v > x)
← on(b, v,b′, u, t),globalPos(b′, u,h, x, t) (h > 0, v > x)

4.4. Supportedness constraints

Supportedness of blocks At every state of the world (including the initial state and goal state), it is desired that

D1 No block is supported by itself (i.e., no circular configurations).
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The formulation of this constraint is challenging because it requires the transitive closure of a binary relation onAux that 
describes which block is on which location.

Recall that onAux is obtained from on by projection, as part of � (Fig. 10):

onAux(b, l, t) ← on(b, v, l, u, t).

For every step t , we recursively define the supportedness of a block b by a location l as follows:

supported(b, l, t) ← onAux(b, l, t)
supported(b, l, t) ← onAux(b, l′, t), supported(l′, l, t) (b �=l′). (8)

After that, we add a constraint to ensure that no block b is supported by itself:

← supported(b,b, t). (9)

Proposition 3. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (8), when added to �, correctly describe the sup-
portedness of blocks by other blocks and by the table. Furthermore, adding constraints (9) to � ∪ (8) guarantees the desired feature D1 
(i.e., no circular configuration of blocks occurs in construction at any time step 0, 1, ..., T − 1).

The proof follows from (i) Theorem 1 of [28] about an equivalent representation of disjunctive rules about occur-
rences/nonoccurrences of actions by nondisjunctive rules, (ii) the observation that � does not contain atoms of the form 
supported(b, l, t) in the heads of its rules, and (iii) Propositions 4 and 5 of [29] about the correctness and well-foundedness 
of the transitive closure of a relation defined recursively in ASP. The proof is presented in Appendix A.

Supportedness of subassemblies Note that in the Blocks World domain, every block is supported by the table unless it is 
being held by a robot. In robot construction problems, since we would like to allow robots to pick and place subassemblies, 
we cannot simply enforce this constraint. Instead, we can enforce that

D2 Every block b is supported by either the table or a block being held by a robot unless the block b itself is being held 
by the robot.

For that, for every time step t , we define an auxiliary concept to identify blocks 1) being supported by the table, 2) being 
supported by a block being held by a robot, or 3) being held by a robot:

supportedAux(b,1, t) ← supported(b,Table, t),
#count{a : arm(a),holding(a,b, t)} = 0

supportedAux(b,2, t) ← supported(b,b′, t),holding(a,b′, t) (b �= b′)
supportedAux(b,3, t) ← holding(a,b, t)

(10)

and add the following constraint to ensure that exactly one of these three cases should hold for each block b (i.e., no flying 
blocks, no blocks supported by both the table and a robot):

← #count{x : supportedAux(b, x, t)} < 1
← #count{x : supportedAux(b, x, t)} > 1

(11)

Proposition 4. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (10), when added to � ∪ (8) ∪ (9), correctly describe 
the supportedness of blocks and subassemblies by other blocks, by the table, or by a robot. Furthermore, adding constraints (11) to 
� ∪ (8) ∪ (9) ∪ (10) guarantees the desired feature D2 (i.e., no flying blocks, and no blocks supported by both the table and a robot at 
any time step 0, 1, ..., T − 1).

The proof follows from (i) the observation that � ∪ (8) ∪ (9) does not contain atoms of the form supportedAux(b, x, t) in 
the heads of its rules, and (ii) from Proposition 3 and 2 of [33] about the conservative extensions of models by adding a 
definition, and elimination of models by adding constraints, respectively. The proof is presented in Appendix A.

4.5. Constraints about occurrences of action

Constraints for manipulating subassemblies in hand Regarding manipulation of subassemblies in robot construction problems, 
it may be desired that

D3 No robot picks/places subassemblies from/to some other subassemblies being held by a robot.

This is guaranteed by the following constraints:

← pick(a,b, t),not supported(b,Table, t)
← place(a,b, t),not supported(b,Table, t)

(12)
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Supportedness of a block by another block or the table:

supported(b, l, t) ← onAux(b, l, t)
supported(b, l, t) ← onAux(b, l′, t), supported(l′, l, t) (b �=l′).

No circular configurations of blocks:

← supported(b,b, t).

Supportedness of a block (or a subassembly) 1) by the table, 2) by another block being held by a robot, or 3) by a 
robot:

supportedAux(b,1, t) ← supported(b,Table, t),
#count{a : arm(a),holding(a,b, t)} = 0

supportedAux(b,2, t) ← supported(b,b′, t),holding(a,b′, t) (b �= b′)
supportedAux(b,3, t) ← holding(a,b, t)

No flying blocks:

← #count{x : supportedAux(b, x, t)} < 1

No block supported by the table and a robot:

← #count{x : supportedAux(b, x, t)} > 1

Fig. 16. Supportedness of blocks and subassemblies.

Noconcurrency constraints Unless specified otherwise, the ASP modeling of the construction problem allows true concur-
rency. We can explicitly specify noconcurrency constraints, based on the capabilities of manipulators or desired conditions 
of the construction process. For instance, it may be desired that

D4 No robot picks a block using both of its grippers.

This is guaranteed by the following constraint:

← #count{a : arm(a),pick(a,b, t)} > 1. (13)

For instance, it may be desired that

D5 A block b cannot be picked by a gripper a while another gripper a′ (a �= a′) is placing a block on b.

This is guaranteed by the following constraint:

← pick(a,b, t),place(a′,b, t). (14)

The following proposition ensures that the constraints above guarantee the desired properties D3–D5, while preserving 
the correctness of the ASP program for robot construction problems discussed in the previous sections.

Proposition 5. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown in 
Fig. 16 about the supportedness of blocks/subassemblies. Then, adding constraints (12) ∪ (13) ∪ (14) to �′ further ensures the desired 
features D3–D5 about occurrences of actions.

Propositions 3 and 4 ensure constructions that satisfy supportedness constraints. Then the proof follows from application 
of Proposition 2 of [33] about the elimination of models by adding constraints (12) ∪ (13) ∪ (14). The proof is explained in 
Appendix A.

Other constraints Depending on the capabilities of the robotic manipulator and the difficulties of execution of concurrent 
actions, we can include further constraints about the occurrences of actions.

For instance, if the robotic manipulator can place a block to a location l from the above only (so it cannot place a block 
to an empty space under another block), then we can add the following constraint to our program above:

← placeLU(l, u, t),not clearAbove(l, u, t)

where placeLU is a projection of placeOn and clearAbove describes that there is no part of any block above a unit space:
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placeLU(l, u, t) ← placeOn(a,b, v, l, u, t)
clearAbove(l, u, t) ← #count{b : globalPos(b, v,h′, x, t),h′ > h} = 0,

globalPos(l, u,h, x, t).

In another case, considering the difficulty of synchronization of actions, it may be desired that a robotic manipulator 
does not replace a block with another block at the same time. This is guaranteed by adding the following constraint:

← pick(a,b, t),on(b, v, l, u, t),placeLU(l, u, t).

Considering the stability of the structure, it may be desired that two blocks cannot be picked at the same time if there 
exists another block that is supported by both of them. This is guaranteed by adding the following constraint:

← pick(a,b, t),pick(a′,b′, t), commonSupported(b,b′, t) (b �= b′)

where commonSupported is defined as follows:

commonSupported(b1,b2, t) ← supported(b,b1, t), supported(b,b2, t) (b1 �= b2).

Similarly, it may be desired that two blocks cannot be placed at the same time if they will support another block together 
afterwards. This is guaranteed by adding the following constraint:

← placeB(a,b, t),placeB(a′,b′, t),
not commonSupported(b,b′, t), commonSupported(b,b′, t + 1)

where placeB is a projection of placeOn:

placeB(a,b, t) ← placeOn(a,b, v, l, u, t).

Remark. In our experiments, we take into account these constraints about occurrences of actions.

4.6. Stability constraints

Stability checks are desired to ensure the stability of the overall assembly and each subassembly at every state of the 
construction plan. These checks can be performed externally by a module utilizing state-of-the-art physics engines, and 
their results can be embedded in the ASP formulation using external atoms. This modular approach enables our framework 
to be independent from any particular implementation of the stability checking algorithm, thus the stability checker can be 
treated as a black-box. Note that same approach is commonly employed for collision-checking during motion planning [61].

Let � be a stability checking algorithm that returns True if the given structure is stable, and False otherwise.
We consider two external atoms to embed stability checks into our ASP formulation:

• &stable[on, t]() gets as input the relative positions of all the blocks supported by the table at step t (described by the 
on predicate); and

• &hStable[holding, on, t]() gets as input the relative positions of all the blocks being carried by a manipulator at step t
(described by holding and on predicates).

Both external atoms utilize the stability checker �, and return the outputs (i.e., True for stable or False for unstable) accord-
ingly.

We embed the outcomes of stability checks into our domain description by constraints as follows:

← not &stable[on, t]()
← holding(a,b, t),onAux(b′,b, t),not &hStable[holding,on, t](). (15)

Note that the external atom &stable[on, t]() gets as input the extension of on predicate at step t , that describes the relative 
positions of the blocks; it returns False if the structure is not stable. The external atom &hStable[holding, on, t]() works in 
the similar fashion but for assemblies that are being carried by a robot.

The following proposition ensures that the constraints (15) guarantee the stability of the assembly being constructed by 
a robot.

Proposition 6. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, and by adding the program shown 
in Fig. 16 about supportedness of blocks/subassemblies. Suppose that the stability checking algorithm � is correct (i.e., the construction 
is stable iff � returns True). Then adding rules (15) to �′ ensures that, at every time step t, every configuration of blocks assembled on 
a flat surface (e.g., table) or being carried by a gripper is stable.
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Fig. 17. Connectedness of blocks in a construction, illustrated as a graph. a) A bridge consisting of 5 blocks, b) connectedness graph where nodes represent 
blocks and edges represent connectedness.

Propositions 3 and 4 ensure constructions that satisfy supportedness constraints and thus prevent spurious structures, 
like flying blocks/subassemblies, circular configurations of blocks, or blocks being supported by both the table and a robot. 
Then the proof of Proposition 6 follows from an application of Proposition 2 of [33] about the elimination of spurious 
models by adding constraints. The proof is presented in Appendix A.

4.7. Bridges and overhangs

In bridge construction scenarios, instead of one whole surface, there are two surfaces apart from each other: e.g., one on 
the left side and the other on the right side. One of the required conditions for a bridge is that, it connects these two sides:

D6 At the end of the construction, there exists a block x supported by the left side of the bridge and another block y
supported by the right hand side of the bridge such that x and y are connected to each other.

First we define immediate-connectedness as symmetric-supportedness:

symSupported(x, y, t) ← supported(x, y, t)
symSupported(x, y, t) ← supported(y, x, t)

(16)

Then we recursively define connectedness of blocks as the transitive closure of immediate-connectedness (as illustrated 
by Fig. 17 by a graph), using an auxiliary atom of the form connected(x, y, t):

connected(x, y, t) ← symSupported(x, y, t)
connected(x, y, t) ← symSupported(x, z, t), connected(z, y, t)

(17)

and add a constraint to ensure the required condition D6 for the last time step T :

← #count{x, y : connected(x, y, T ),

side(x, Left, T ), side(y,Right, T )} = 0.
(18)

Here, side(x, Left, T ) expresses that there exists a block x supported by the left side of the bridge at time step T .

Proposition 7. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′ be the 
program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown in Fig. 16 about supportedness 
of blocks/subassemblies, and by adding the constraints (15) about stability of the construction. Then, adding rules (16) ∪ (17) ∪ (18) to 
�′ ensures a stable symmetric bridge (i.e., a construction that satisfies the condition D6) at time step T .

Propositions 3–6 ensure constructions that satisfy supportedness and stability constraints. Then the proof follows from 
Proposition 3 and 2 of [33] about the conservative extensions of models by adding a definition, and elimination of models 
by adding constraints, respectively.

Uneven bridges In order to solve scenarios involving uneven bridges as shown in Fig. 18, the heights of both sides (Left and 
Right) should be specified in the base cases of the recursive definition of the global position of a unit space of a block.

Note that, in the program shown in Fig. 12, since all blocks are assumed to be on the same surface (i.e., Table), the base 
case of the recursive definition (5) is expressed by the following rule:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t) (1 ≤ x ≤ nT able).

Now we have two surfaces, Left and Right sides, we need to consider their heights and how far the Right side is from 
the Left side. Suppose that the height of the left side of the bridge is H , the height of the right side is H ′ , and the leftmost
17



Fig. 18. The height difference between the left and right side is 4 units.

side of the right side is L′ units from the leftmost side of the left side. Then, instead of the rule above, we define the base 
cases by the following rules:

globalPos(b, v, H + 1, x, t) ← on(b, v, Left, x, t) (1 ≤ x ≤ nLef t)

globalPos(b, v, H ′ + 1, x + L′ − 1, t) ← on(b, v,Right, x, t) (1 ≤ x ≤ nRight).

We also need to update the definition of empty spaces, to include parts of the sides and what is between the sides. 
Instead of the following rule:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0)

we can include the following rules:

partOfSide(h′, x) ← globalPos(s, v,h, x,0) (h > 0,0 ≤ h′ < h, s = Left,Right)
emptyOther(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0,

not partOfSide(h, x) (0 ≤ h)

empty(h, x, t) ← partOfSide(h, x)
empty(h, x, t) ← emptyOther(h, x, t).

Overhangs In overhang scenarios (Fig. 19), one of the required conditions about a final structure is that

• there exists a block b supported by Table such that unit v of b is globally located at x units from the leftmost side of 
the table, and

• the difference between the maximum overhang z and the size of Table is equal to x.

← #count{b : supported(b,Table, T ),globalPos(b, v, _, x, T ),

x = z − size(Table),overhang(z)} = 0.

4.8. Maximizing/minimizing the heights of stacks

In block stacking scenarios, the goal may involve maximizing/minimizing the heights of stacks. A stack can be a tower or 
a tightly packed structure with or without holes, supported by a base (e.g., a block, blocks, table or sides of a bridge). For 
instance, Fig. 20 presents a stack with a height of 8 units.

Maximizing the height To maximize the height of a specified block B in a stack, first we define a penalty for each block b
at the end of the plan, at time step T , inversely proportional to its height h in a stack (e.g., C − h where C is the maximum 
height of a structure built by the existing blocks). Then, we add a weak constraint that minimizes the penalty for the 
specified block B , at the end of the plan, at time step T .

�←− globalPos(B_,h, _, T ), c = C − h. [c@1] (19)

In Fig. 21, the height of the block L2 is maximized. Note that L2 is a large block of 4 units, whereas S1, ..., S4 are small 
blocks of size 1. Therefore, L2 cannot be supported by a tower of small blocks. Fortunately, L2 can be supported by two 
small blocks, as shown in the figure.

In Fig. 22, the height of block L1 is maximized by making use of the available blocks. It is important to note that, here 
the goal is not to connect the two sides.
F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
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Fig. 19. A sample plan for a stable overhang construction.
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Fig. 20. Maximizing the height of block S3 in a stack of 8 blocks.

Fig. 21. Maximizing the height of block L2 in a stack of 6 blocks.

Fig. 22. Maximizing the height of block L1 in a stack of 4 blocks when there are two uneven sides with a height difference of 1 unit.

Fig. 23. Minimizing the height of block S3 in a stack of 8 blocks. Here, M1 is the base of the stack.

Minimizing the height Alternatively, the height of a specified block B in a stack can be minimized using a penalty that is 
directly proportional to the height of the block.

�←− globalPos(B_,h, _, T ). [h@1] (20)

Here, we can ensure that all blocks (including the one whose height is to be minimized) should be part of a stack built 
on block L.

← not supported(b, L, T ) (b �=L). (21)

In Fig. 23, the height of the block S3 is minimized, in a stack that involves all the blocks supported by the base block 
M1 on the table.

4.9. Soundness and completeness

The soundness of the proposed method with respect to the desired properties is provided by Propositions 3–7. The 
following proposition shows its completeness.
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Fig. 24. (a) A final stable configuration. (b) An intermediate configuration of blocks obtained when feasibility checks are not used.

Proposition 8. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′
be the ASP program obtained from � by adding the supportedness and stability constraints (and, in case of bridge construction, also 
the connectedness constraints), and the ramification rules as described above. Then every robot construction plan that satisfies these 
desired properties and whose makespan is at most T −1 is characterized by an answer set for �′.

The proof follows from the representation methodology of the program: no constraint added to the program eliminates 
a valid robot construction plan.

5. Importance of feasibility check and hybrid planning for construction problems

Maintaining the stability of a structure is of prime importance in construction tasks. The structure should be stable 
during all the steps of construction. Ensuring stability at all times is challenging from both planning and geometric points 
of view.

As discussed in Section 4, in order to perform the continuous domain checks, we utilize external atoms stable and hStable
implemented as Python functions.

In particular, we test stability numerically using the PyBullet physics engine. To ensure robust stability of our assemblies 
even under bounded disturbances, we adapt the notion of dynamic stability, in the sense of Fourier’s inequality, which 
requires all objects to assume zero acceleration within a local neighborhood of their initial configuration, under the action 
of gravitational and friction forces [74]. In addition to gravitational forces, we consider small disturbance forces to the 
assembly and check for its configuration after some finite time interval. If the configuration of each object in the assembly 
stays within an empirically determined threshold from their initial location, we consider the assembly as dynamically stable.

As an example, consider the construction problem shown in Fig. 24, with two small blocks S1 and S2, a medium block 
M1, and a large block L1. All the blocks are initially on the table.

The goal conditions for a final configuration are specified by a set of facts:

goal(S1, L1). goal(S2, L1). goal(M1, S1). goal(M1, S2). goal(L1,Table).

According to this description, the small blocks S1 and S2 are on the long block L1, the block M1 is on S1 and S2, and the 
block L1 is on the table.

These goal conditions are ensured at a specified maximum step T by constraints as follows:

← goal(b, l),not onAux(b, l, T ).

Note that since onAux atoms are projections of on, the final positions of objects are selected nondeterministically. We include 
the constraint above in the following examples where the goal is specified by atoms of the form goal(B, L).

A possible final stable configuration is shown in Fig. 24(a). Such a configuration is achievable by the following hybrid 
plan of length 4 (with 6 actions), computed by dlvhex as:

pick(Left, S2,0),pick(Right, S1,0),

placeOn(Right, S1,1, L1,2,1),

placeOn(Left, S2,1, L1,4,2),pick(Right, M1,2),

placeOn(Right, M1,3, S2,1,3).

According to this plan, first the smaller blocks are picked and placed on the long block; afterwards, the medium block is 
picked and placed on top of the two small blocks.

Now, let us consider a domain description without any feasibility checks. Then, dlvhex computes the following non-
hybrid task plan of length 4 (with 6 actions):

pick(Right, M1,0),pick(Left, S2,0),

placeOn(Left, S2,1, L1,4,1),

placeOn(Right, M1,3, S2,1,2),pick(Left, S1,2),

placeOn(Left, S1,1, L1,2,3).

According to this non-hybrid plan, first the medium block M2 and the small block S2 are picked, then the small block 
is placed on the longer block L1, then the medium block M2 is placed on S2. At this point, an unstable configuration is 
obtained, as shown in Fig. 24(b). Therefore, integration of feasibility checks is crucial to ensure generation of stable plans.
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Fig. 25. (a) A final stable configuration. (b) An intermediate configuration of blocks, obtained when feasibility checks are not used.

Let us present another example. Consider the construction problem in Fig. 25 with six blocks on the table, S1, S2, S3, 
M1, M2, and L1, with the following goal conditions:

goal(M2, S1). goal(S2, M1).

goal(L1, S2). goal(L1, M2).

goal(S1,Table). goal(S3,Table). goal(M1,Table).

A possible final stable configuration is shown in Fig. 25. Such a configuration is achievable by the following hybrid plan 
of length 4 (with 6 actions), computed by dlvhex:

pick(Left, M2,0),pick(Right, S2,0),

placeOn(Left, M2,3, S3,1,1),placeOn(Right, S2,2, M1,1,1),

pick(Right, L1,2),

placeOn(Right, L1,5, S2,1,3).

Without any feasibility checks, the following plan of length 4 (with 6 actions) is computed:

pick(Right, M2,0)

pick(Left, L1,1),placeOn(Right, M2,3, S1,1,1),

pick(Right, S2,2),placeOn(Left, L1,1, M1,3,2),

placeOn(Right, S2,1, M2,1,3).

This non-hybrid task plan is not feasible since it leads to an unstable intermediate configuration, where the medium block 
M2 is placed on the small block S1 at one end, leaving the center of mass outside the small block.

6. Benchmark instances and experimental evaluation

In this section, we introduce a diverse set of challenging robot construction benchmark instances. Precise definitions of 
these 21 benchmark instances, and a feasible construction plan computed by our method for each benchmark instance are 
provided in Appendix B, not to interfere with the readability of the manuscript.

The benchmark instances address different types of construction problems: Scenarios 1–8 necessitate multiple au-
tonomous robots rearrange stacks of prefabricated blocks to build stable structures by making use of counterweights, 
scaffolding, subassemblies, and true concurrency of manipulations. Scenarios 9–11 focus on construction of stable over-
hangs with proper use of counterweights. Scenarios 12 and 13 and Scenarios 14 and 15 emphasize the connectivity of two 
sides to build stable symmetric and asymmetric (uneven) bridges, respectively. Finally, Scenarios 16–21 provide examples of 
challenging optimization problems while building stable stacks of prefabricated blocks or bridges.

While our main concern in this study is not computational efficiency, we have performed three sets of experiments using 
the domain description presented in the paper (without any further optimizations) to investigate the following aspects:

• Experiments 1: The scalability of the proposed hybrid method using the automated reasoner dlvhex and PyBul-
let physics engine on table-top, overhang and bridge instances, in terms of computation time.

• Experiments 2: The effect of specifying goal description in more detail, on the computation time.
• Experiments 3: The effect of integrating stability checks on the computation time.

For all experiments, we have used the ASP solver dlvhex 2.5 with PyBullet 2.4.1 physics engine installed on a Linux 
server with 16 2.4 GHz Intel® Xeon® E5-2665 CPU cores and 64 GB memory. For each benchmark scenario, six runs were 
performed in parallel with different solver settings (i.e., with configurations handy or jumpy); we report the CPU times of 
all six runs and highlight the fastest one in the tables below.

Experiments 1: scalability Table 1 presents the computational times for Scenarios 1–9 with one surface (i.e., the table). 
Table 1 indicates that Scenarios 1–9 (with 4–10 blocks of different sizes and weights, where the table size is restricted to 
4–15 units of space) can be consistently solved within about 5 minutes. The makespans of plans range between 2 and 9. 
From these results, we observe the input size (cf. the product of the number of blocks and the size of the table) has a 
significant effect on the computation time: the computation time increases as the input size increases.

While a feasible solution of a 4 unit overhang is presented for Scenario 10 (with 7 blocks and surface space of 7 units) 
in Fig. B.36 of Appendix B, the computational time for this instance is not reported in Table 1 since a solution for a 4 unit 
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Table 1
Computation time for benchmark Scenarios 1–9.

Instance Plan Length # Rules Solver Configuration # Runs CPU Time [sec]

Scenario 1 (Fig. B.27)
10 blocks (table size 11)

2 989316

handy
1 29.9
2 24.0
3 25.6

jumpy
1 23.8
2 23.9
3 26.2

Scenario 2 (Fig. B.28)
4 blocks (table size 6)

6 285581

handy
1 6.8
2 7.2
3 9.5

jumpy
1 7.0
2 8.2
3 8.4

Scenario 3 (Fig. B.29)
4 blocks (table size 4)

5 44697

handy
1 2.0
2 2.0
3 2.1

jumpy
1 1.8
2 2.1
3 2.1

Scenario 4 (Fig. B.30)
6 blocks (table size 7)

4 259191

handy
1 7.6
2 10.8
3 6.1

jumpy
1 6.8
2 7.2
3 6.5

Scenario 5 (Fig. B.31)
5 blocks (table size 9)

7 1745933

handy
1 108.2
2 83.0
3 78.0

jumpy
1 186.2
2 175.8
3 96.4

Scenario 6 (Fig. B.32)
5 blocks (table size 7)

9 1194702

handy
1 2697.9
2 32.0
3 32.2

jumpy
1 168.2
2 53.2
3 30.7

Scenario 7 (Fig. B.33)
8 blocks (table size 15)

4 6027747

handy
1 819.2
2 707.1
3 695.7

jumpy
1 204.5
2 244.2
3 321.8

Scenario 8 (Fig. B.34)
9 blocks (table size 14)

4 6910706

handy
1 611.4
2 547.0
3 666.3

jumpy
1 210.6
2 368.3
3 337.6

Scenario 9 (Fig. B.35)
8 blocks (table size 5, overhang size 3)

6 871040

handy
1 18.6
2 18.9
3 18.7

jumpy
1 27.4
2 27.7
3 32.6

overhang cannot be computed within the time threshold of 5000 seconds. Similarly, a solution for Scenario 11 cannot be 
computed within the threshold. As expected, the computation time for overhang scenarios quickly become intractable as 
the maximum overhang size increases.

Table 2 provides the results of evaluations for symmetric and asymmetric bridge scenarios. In particular, the plans for 
Symmetric Bridge Benchmarks 1 and 2 characterize stable bridges over 3 and 5 units of gaps between two surfaces of the 
same height, respectively. The plans for Asymmetric Bridge Benchmarks 1 and 2 characterize stable bridges over 4 units 
of gaps between two surfaces of different heights with 2 and 3 units of height differences, respectively. Larger symmetric 
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Table 2
Computation time for symmetric and asymmetric bridge benchmarks.

Instance Plan
Length

# Rules
Clasp

Configuration

CPU Time [sec]

# Runs
With Stability Checks Without Stability Checks

Connectivity
Constraint

Abstract
Goal

Exact
Goal

Abstract
Goal

Exact
Goal

Symmetric Bridge
Benchmark 1

(Fig. 17(a))
2 45498

handy
1 2.0 1.7 1.7 0.9 1.2
2 2.0 1.8 1.6 1.0 1.1
3 2.0 1.7 2.1 0.9 0.9

jumpy
1 1.8 1.7 2.4 0.9 1.2
2 1.7 1.6 1.6 0.9 1.2
3 1.8 1.7 2.5 0.9 1.2

Symmetric Bridge
Benchmark 2

4 259191

handy
1 537.4 114.7 46.7 48.9 36.8
2 133.1 118.8 53.1 77.7 34.9
3 459.5 150.1 51.8 95.4 37.8

jumpy
1 71.9 61.2 54.7 47.5 37.8
2 398.4 68.4 58.4 60.4 38.0
3 540.8 76.5 57.4 60.4 35.2

Asymmetric Bridge
Benchmark 1

(Fig. B.40)
6 1745933

handy
1 2693.8 548.2 145.9 459.5 108.0
2 434.9 430.6 292.1 484.9 117.0
3 790.6 585.6 180.1 297.3 139.6

jumpy
1 163.9 438.3 161.7 292.3 72.3
2 605.7 409.6 145.9 312.1 105.8
3 298.2 461.3 173.0 261.9 113.3

Asymmetric Bridge
Benchmark 2

6 1688641

handy
1 1023.0 423.9 209.2 83.6 52.1
2 3877.6 897.4 310.3 117.2 68.3
3 3688.5 776.5 188.5 115.0 90.4

jumpy
1 6967.0 92.7 171.3 94.7 53.2
2 5209.5 361.4 113.0 79.2 60.3
3 timeout 297.5 203.9 101.4 50.4

and asymmetric bridge scenarios shown in Figs. B.38, B.39, and B.41 are not included in the evaluations, as these instances 
cannot be solved within the 5000 second time threshold.

Experiments 2: granularity of goal specifications There may be multiple goal configurations of blocks depending on the desired 
conditions about the final structure, and all of them may not be stable. In such cases, finding a stable goal configuration is 
a challenge.

To evaluate the effect of the granularity of goal specifications on the computational efficiency, three different descriptions 
of a goal configuration are tested:

• Case (i) only the connectivity of the two sides of a river is provided as a constraint to describe the goal;
• Case (ii) in addition to the connectivity constraint, an abstract description of which block is on top of which other block 

is specified; and
• Case (iii) in addition to the connectivity constraint, for each block, an exact definition of which unit is on top of which 

unit of other blocks is provided.

Intuitively, Case (i) simply asks the system to “build a bridge that connects two sides”, Case (ii) specifies to “build a bridge 
where block M1 is on block M3, etc.”, and Case (iii) specifies to “build a bridge where the unit space 2 of block M1 is on 
the unit space 3 of the block M3, etc.”.

The results of our experiments are presented in Table 2. The results indicate that, similar to the overhang scenarios, the 
computation time for bridge scenarios quickly becomes intractable as the gap and the height difference between the sides 
increases.

Moreover, Table 2 provides evidence that the computation time decreases, as the goal specifications become more precise. 
In particular, Case (iii) takes the least amount of time, as a stable goal configuration is provided as an input to the automated 
reasoner.

Experiments 3: stability checks To evaluate the effect of integrating stability checks on the computational efficiency, the 
experiments for Case (ii) and Case (iii) were also run when the feasibility checks were turned off (i.e., the stability checks 
return True for all instances). It is important to underline that we have not modified the domain description. Instead, we 
have modified the stability checkers so that they always return a positive response. We have also ensured that, for each 
scenario, the length of the plan is the same as the length of the plan computed with stability checks. In this way, the sizes 
of the programs are very close to each other, with or without stability checks.
24



F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Please note that, the results of computations without the stability checks are highly likely to be infeasible as the stability 
of the intermediate and/or goal states are not ensured. Along these lines, these results need to be verified with a physics 
engine and some sort of replanning needs to be performed until a plan is verified to be feasible [31].

Table 2 shows that the integration of the stability checks increases the computation time, especially for larger scenarios. 
For instance, the results for Asymmetric Bridge Benchmark 2 indicate that, when an abstract goal configuration is provided, 
the computation of a solution with the feasibility checks takes 2 to 5 times longer. However, please note that since the 
feasibility of a plan cannot be ensured when the stability checks are turned off, it is likely that more than 5 different 
plans need to be computed until a plan can be verified to be feasible. Hence, integration of the stability checks, in general, 
presents a more efficient means to compute a feasible plan as discussed in [31].

Further discussions Let us discuss the results of these experiments in the light of how dlvhex handles external atoms.
dlvhex replaces external atoms with auxiliary atoms, and introduces auxiliary rules so that the answer sets of the original 
program correspond to a subset of the answers sets of the resulting program where the auxiliary atoms faithfully represent 
the values of the external atoms. While this compatibility check is done, dlvhex learns “nogoods” describing conditions 
which contradict the semantics of external atoms, and utilizes nogoods to restrict the search space.

While the strategy of learning nogoods improves the computational performance for certain domains, it has been ob-
served by Eiter et al. [24] in a robotic domain that this strategy may lead to inefficient computations: since the external 
atoms depend on a large part of the interpretation (e.g., locations of all blocks), learning nogoods from evaluations of 
external atoms cannot simply cut away significant portions of the search space. We make similar observations in robot 
construction problems.

Furthermore, in particular in the bridge and overhang scenarios, we observe an increase in the computation time when 
the goal condition is provided as a set of connectivity constraints, leading to a very large number of possible goal configu-
rations for the blocks. Note that the computation times decrease as the goal conditions become more restrictive, as can be 
observed under the abstract goal and exact goal conditions.

7. Solving robot construction problems with hybrid planning: implementation and execution

To verify the executability of the plans computed by our method and to show their applicability with real robots, we 
have completed dynamic simulations and physical implementations of several benchmark scenarios.

We have considered the scenarios shown in Figs. 5, 6 and 19 as they present several interesting scenarios to show the 
applicability of our formal approach to address challenging robot construction problems.

Figs. 5 and 6 present four scenarios that demonstrate the need for (a) manipulation of subassemblies, (b) utilization 
of counterweights, (c) use of scaffolds, and (d) true (non-serializable) concurrency to ensure stable construction of certain 
structures.

For instance, Fig. 5a demonstrates manipulation of subassemblies, where a sub-assembly comprises of two or more 
blocks being manipulated together by a single manipulator. The stability of the assembly and the subassemblies are ensured 
throughout the plan. Note that, in this scenario, not only it is challenging to decide on which sub-assemblies may be used 
for efficient construction, but also to ensure the stability of the sub-structures and represent the effects of manipulating a 
sub-assembly, due to ramifications.

Fig. 5b presents a scenario where counterweights are introduced temporarily to balance the weight of the structure, so 
that it remains stable during the construction. At the time step 3, the robot places M1 with its Lef t arm on L1 to be used 
as a temporary counterweight. Note that this counterweight ensures the stability of the construction at the next time step. 
In the end, the robot places M1 on the table, as M1 is used only as a counterweight to temporarily to balance the structure 
and is not part of the final stable configuration. Note that deciding the use of counterweights as part of a hybrid plan is 
challenging.

Fig. 6a presents a scenario where scaffolding is used to temporarily support the construction. In scaffolding, instead of 
supporting the structure from above by introducing a heavy object, the structure is supported from below. Note that, at 
time step 3, S4 is placed as a scaffold to support the structure. In the end, the robot moves S4 away from the structure as 
it is not part of the final stable configuration. Note that deciding the use of scaffolds as part of a hybrid plan is challenging.

Fig. 6b demonstrates a scenario where non-serializable true concurrency is required. In this scenario, we assume that 
counterweights, scaffolds or subassembly manipulations are not allowed. At time step 4, the robot concurrently places S1
and S2 on either end of L1 to achieve a final stable configuration. Note that if the last actions are not executed concurrently, 
the structure would become unstable. Allowing true concurrency in planning is a challenging problem, from the perspectives 
of both representation and reasoning.

Fig. 19 depicts a plan to construct an overhang of 4 units from the edge of the table by a bimanual manipulator. Here, 
blocks C1–C4 are used as counterweights and blocks M1–M3 are used to create the overhang.

7.1. Dynamic simulation

Dynamic simulations are implemented in Gazebo [56] version 7. The positions of all the blocks are known initially. 
After computing a task plan, OMPL [90] is used to generate a motion plan for every action in the construction plan, and 
MoveIt [14] commander is used to follow that motion plan.
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Fig. 26. Snapshots present dynamic simulation of a sample construction problem with a bimanual Baxter robot.

Fig. 26 presents snapshots from a dynamic simulation of a sample construction problem with a bimanual Baxter robot. 
In this scenario, the medium block is used as a counter weight to prevent the structure from falling.

Initially all the blocks are on the table and the robot picks up a small block, as in Snapshot Initial. The robot places the 
small block on the table and picks the large block in Snapshot 1. Robot places the large block on the small block and picks 
the medium block in Snapshot 2. The robot places the medium block on the large block in Snapshot 3. The robot places 
the small block on the large block and picks up another small block in Snapshot 4. The robot places the small block on the 
large block in Snapshot 5. The robot picks up the medium block in Snapshot 6 and places it on the table in Snapshot Goal.

Dynamic simulations of several interesting construction planning scenarios are presented at https://www.youtube .com /
watch ?v =LDJIH _dViOU.

7.2. Execution

After a construction plan is computed for a particular scenario, and continuous motion trajectories for robot manipulators 
are computed using OMPL, a physical execution is performed.

We have used a Baxter robot, a bimanual robot with two seven degrees of freedom arms, for execution of construction 
plans. Three kinds of blocks are utilized: small, medium and large. The size of the smallest block is 30 × 30 × 30 mm3, the 
size of a medium-sized block is 90 × 30 × 30 mm3, and the size of the largest block is 150 × 30 × 30 mm3. All blocks are 
machined from aluminum, and are spray-painted with different colors to simplify object identification.

A video of a sample physical execution of construction plans is also presented at https://www.youtube .com /watch ?v =
RyUeMaBERtw.

8. Related work

To the best of authors’ knowledge, this is the first robotic construction study that addresses a variety of multi-robot 
stack rearrangement planning problems for building stable structures of different sorts. In the literature, there exist several 
studies that focus on different specific aspects of the robotic construction task: deciding for the stability of a given structure 
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(e.g., from an image obtained from Angry Birds), deciding for the existence of a specified stable structure (e.g., a maximum 
overhang) from a given set of identical blocks or an unspecified stack from a given set of different sizes of objects (e.g., like 
stones), planning for towers of identical blocks (e.g., the blocks world) ignoring stability, etc. Let us go over them to better 
emphasize the challenges of the robot construction problems that we study.

The blocks world: The well-known (elementary) blocks world problems [105] have been widely studied by AI com-
munity. It is proven to be NP-complete to decide the existence of a plan whose makespan is less than a given positive 
integer [46, Theorem B.5]. Blocks world problems are quite restricted compared to robot construction problems, since while 
proposing the problem, Winograd’s interest was in language rather than in construction problems. For instance, the blocks 
world deals with identical blocks and allows a block to be placed on a flat surface or on another block, but not on multiple 
blocks as necessitated by the robot construction problems. It does not allow manipulation of subassemblies, use of coun-
terweights and scaffolds, or concurrent placements of blocks, either. Also, there is no consideration of feasibility checks to 
ensure the stability of the stack at each step of a plan.

Later, Fahlman [36] has introduced a set of robot construction problems where the goal is for a robot to build specified 
structures out of simple blocks of different shapes and sizes. These problems allow incorporation of subassemblies into the 
final design, and the use of extra blocks as temporary supports or counterweights during construction; they also consider 
collisions of blocks and instability of the structures, but not motion planning. Fahlman’s main interest was in maximizing 
common sense (rather than soundness, completeness or optimality). He implemented a planning system (called Build) to 
solve some of these problems. Build utilizes the programming language Conniver [68,91] to control and invoke procedures 
(rather than backtracking search based on failure), guided with heuristics. Therefore, as Fahlman notes in his paper [36], 
most of the effort in Build is spent to implement procedures (e.g., for constructing a subassembly, or for checking stability 
check of a subassembly). Fahlman’s robot construction problems have not been investigated with a formal approach since 
then.

Maximum overhang puzzle: Mathematicians and theoretical computer scientists have studied a classic puzzle that aims 
to determine the maximum overhang achievable by a stack of identical blocks [47,76,75,77]. A relatively recent solution [75,
77] to this 150 year old puzzle, honored with the prestigious David P. Robbins Prize in mathematics, has introduced the use 
of blocks as counterbalance to improve upon the well-established solution. While the maximum overhang problem focuses 
on the determination of a stable and optimal final configuration of identical blocks, the planning aspects of the construction 
problem to attain the goal configuration is not considered within the scope of these studies.

Image understanding and qualitative reasoning in games: Applications in scene understanding from 2D pictures and 
computer games require inferring physical relations among objects [46,54,86]. Determination of stability of stacked objects 
and supportedness among objects have been studied, commonly with qualitative reasoning approaches [97]. Determination 
of stable final configuration of constructions has also been studied in computer games, like Angry Bird [37,86,13]. These 
studies focus on the physical relations of a given final configuration and do not address the block rearrangement problem 
to build stable constructions.

Stability of assemblies: In robotics, static stability [6,63,64,82,66,106,102,69] and dynamic stability [74,84] of assemblies 
with and without friction have been thoroughly studied. The computational complexity of determining the assembly stability 
in 2D is established in [73]. The stability determination techniques have been utilized in several robotic applications, that 
include a Jenga playing robot [99], multiple robots building a ramp [70], an autonomous robot stacking a balancing vertical 
tower out of irregularly shaped stones [38], and a robot dry stacking irregular objects to build large piles [92]. Note that, in 
these studies, the challenging task planning aspect of construction planning has not been addressed.

Toussaint [95] has utilized stability checks for building some tallest stable tower from a set of unlabeled cylinders and 
blocks; no goal condition is specified. His method applies a restricted version of task planning to decide for the order of 
manipulation actions, based on simple Strips operators and Monte Carlo tree search, and considers a restricted form of 
stability check that depends on whether the objects are placed on support areas of other objects. Due to these restrictions, 
his method is limited to building towers with sequential plans.

Note that for sophisticated constructions that involve temporary scaffolding, counterweights, and subassemblies, it is 
necessary to express ramifications of actions as well as true concurrency. However, as discussed in the introduction, ex-
pressing ramifications directly by simple Strips operators is challenging [93, Theorem 3] due to lack of logical inference. 
Also, expressing true concurrency directly is challenging as the domain description needs to be extended with exponential 
number of new operators, where each operator characterizes a concurrent action. Due to these theoretical results, other 
studies [32,48,96] that rely on simple Strips operators, do not present general methods for such sophisticated constructions 
either.

It is important to note that these methods do not cover sophisticated structures, like bridges or overhangs, since objects 
are not necessarily placed on support areas of other objects. Such sophisticated structures require definition of transitive 
closure to ensure supportedness or connectedness. Transitive closure is not definable in first-order logic [35, Theorem 5]; it 
is not directly supported by Strips either [93], in general.

Assembly planning: In automated manufacturing, assembly plans aim to determine the proper order of assembly op-
erations to build a coherent object. During assembly planning, the goal configuration is well-defined and the problem is 
generally approached by starting with the goal configuration and working backwards to disassemble all parts. Object sta-
bility has also been considered within this context [8,62,83,104,80,5,98]. The assembly planning problem is significantly 
different from the robotic construction problems: on the one hand, it allows assembly of irregular objects; on the other 
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hand, the goal configuration is pre-determined and solutions are commonly restricted to monotone plans where an object 
is moved at most once.

Rearrangement planning: Geometric rearrangement with multiple movable objects and its variations (like navigation 
among movable obstacles [88,87]) have been studied in literature. Since even a simplified variant with only one movable 
obstacle has been proved to be NP-hard [103,19], many studies introduce several important restrictions to the problem, like 
monotonicity of plans [16,20,89,2,72,58,57]. While a few can handle nonmonotone plans [52,59]; these studies do not allow 
stacking either. Recently, Han et al. [49] study rearrangement of objects in stack-like containers (by pushes and pops); these 
problems do not require stability checks.

Hybrid planning: Hybrid planning has been generally concerned about the problem of combining task planning with 
feasibility checks. Recent work on hybrid planning usually considers feasibility checks based on motion planning, and can 
be described in three groups with respect to their computational approaches: (i) by developing/modifying search algorithms 
for task planning that utilize motion planning [45,51,3,55,60,85,1], (ii) by utilizing formal methods and relevant solvers [78,
17,18], or (iii) by formally embedding motion planning as part of representations of actions (in the spirit of semantic 
attachments [101]) and using relevant automated reasoners [11,21,53,39,27,31,4,40,94]. The studies in the third group are 
further extended to HTN planning [65] and conditional planning [71].

Our approach to hybrid planning for construction problems is similar to the studies in the third group since we embed 
feasibility checks in action descriptions, and utilize ASP solvers to solve hybrid planing problems. On the other hand, our 
study is different from these studies in two important ways, as necessitated by the challenges of construction problems. 
First, we consider stability checks as feasibility checks. The stability checks require the locations of all blocks in the en-
vironment, including the ones on surfaces and the ones being held. This requirement brings about the second important 
difference: embeddings of terms (i.e., object constants and variables) in semantic attachments as in the related approaches 
are not sufficient anymore, since the stability checks necessitate extensions of predicates (e.g., the predicates on and holding). 
Currently, there exists one automated reasoner (i.e., dlvhex) that supports embeddings of predicate extensions in semantic 
attachments and that can be used for planning.

Our earlier studies: We have been studying on various hybrid reasoning tasks (e.g., assembly planning [11,27], rear-
rangement planning [52], conditional planning [79,71], diagnosis [81], explanation generation [15]) for robotics applications. 
In these studies, we have considered different feasibility checks based on motion planning, such as reachability and gras-
pability checks, and investigated hybrid reasoning methods based on action languages [42,44] or ASP languages [12] to 
find solutions. From the perspective of hybrid planning applied to manipulation tasks, this study is different from our ear-
lier studies in the following ways. First, manipulation tasks for a construction involve not only table-top picks and places 
but also stacking, subassemblies, bridges and overhangs. These possibilities lead to global constraints and goal conditions 
that require recursive definitions. Also, due to different sizes of blocks, manipulation actions lead to many sophisticated 
positive and negative ramifications that utilize recursive definitions. As discussed above, construction problems require sta-
bility checks whose embeddings in action descriptions necessitate extensions of predicates; this is challenging for existing 
automated reasoners.

9. Conclusion

We have studied multi-robot construction problems that are challenging for both AI and Robotics not only due to mod-
eling challenges (e.g., ramifications of manipulation actions, true concurrency of actions, supportedness of blocks by other 
blocks), but also due to necessity of stability checks of constructions as they are being built. We have addressed these 
challenges by a hybrid planning framework developed over the logic-based formalism and automated reasoners of Answer 
Set Programming (ASP): ASP allows true concurrency, embedding outcomes of stability checks into state constraints by ex-
ternal atoms, recursive definitions of sophisticated concepts, like supportedness and connectedness, and nested recursive 
definitions of global positions of blocks from their relative positions. Thanks to the expressive knowledge representation 
languages of ASP, our hybrid planning framework is general enough to solve a variety of construction problems.

We have provided theoretical guarantees on soundness and completeness for our formal framework, with respect to 
the desired properties of constructions (e.g., absence of nonsensical structures such as circular configurations of blocks, 
connectedness of the two sides of a bridge, stability of constructions).

We have introduced a diverse set of challenging robot construction benchmark instances that include bridges and 
overhangs constructed with counterweights, scaffolding and true concurrency of manipulations. We have discussed the 
usefulness of our framework over these instances, performed experiments to investigate the computational performance of 
our hybrid method, and demonstrated the applicability of our method using a bimanual Baxter robot. Such a benchmark 
set of different types of construction and such demonstrations with real robots are useful to advance studies on robot 
construction problems, hybrid planning, and knowledge representation.

Future work Robot construction problems present further interesting challenges to knowledge representation and reason-
ing, planning, and robotics. For instance, allowing blocks of different heights, width, shapes, or orientations would lead to 
more sophisticated ramifications. Allowing blocks to be manipulated by multiple robots, or considering environments with 
restricted spaces would require more involved feasibility checks.
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Discussion This study has been highly interdisciplinary and involved handling challenges from the perspectives of knowl-
edge representation and reasoning, planning, and robotics. It has led to synergies not only between planning and robotics, 
but also between knowledge representation (in particular, reasoning about actions and change) and planning.

We believe that the challenges involved in formally representing the construction domain and devising methods that can 
provide solutions to construction problems with soundness and completeness guarantees, are inspiring for further studies 
in knowledge representation and reasoning, planning, and robotics.

In this study, we have addressed the challenges of construction problems using the knowledge representation and rea-
soning paradigm of ASP, since it has provided us with an expressive language and an efficient solver with the capability of 
integrating external computations. Note that ASP languages have not been introduced specifically to reason about actions 
and change or planning; ASP is applied to solve problems in a variety of applications [42]. Therefore, investigating the 
challenges of construction problems using languages particularly designed for reasoning about actions and change and for 
planning is an open research problem.
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Appendix A. Proofs

Let us first present the definitions and theorems that we use in the proofs of Propositions 3–7.

A.1. Transitive closure in ASP

Erdem and Lifschitz [29] consider nondisjunctive programs that consist of rules of the form

Head ← Body,

where Head is a literal or ⊥ and Body is a formula, and consider the following definition Def of the transitive closure of tc
of a binary relation p:

tc(x, y) ← p(x, y)

tc(x, y) ← p(x, v), tc(v, y).
(A.1)

Then they prove its correctness:

Proposition 4 of [29]. Let � be a program that does not contain atoms of the form tc(x, y) in the heads of rules. If X is an 
answer set for � ∪ Def then {〈x, y〉 : tc(x, y) ∈ X} is the transitive closure of {〈x, y〉 : p(x, y) ∈ X}.

Moreover, they provide a syntactic condition to ensure the well-foundedness of p:

Proposition 5 of [29]. If � contains a constraint

← tc(x, x)

and C is finite, then for every set X of literals that is closed under � ∪ Def , the set {〈x, y〉 : p(x, y) ∈ X} is well-founded.
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A.2. Equivalent transformations in ASP

Erdem and Lifschitz [28] consider disjunctive programs that consist of rules of the form:

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm

where m, k ≥ 0, each αi and each βi are literals. They prove that, in such programs, some disjunctive rules can be replaced 
by nondisjunctive rules, preserving the answer sets for the program.

Theorem 1 of [28]. For any program � and any atom p, the programs

p ∨ ¬p ←
and the program

p ← not ¬p
¬p ← not p

have the same answer sets.

A.3. Definitions and constraints in ASP

Erdogan and Lifschitz [33] consider a more general form of programs that consist of rules of the form

Head ← Body,

where Head and Body are formulas, and prove that adding a definition to such a program produces a conservative extension.

Proposition 3 of [33]. Let �1 be a program and Q be a set of atoms that donot occur in �1. Let �2 be a program that 
consists of rules of the form

q ← F

where q ∈ Q , and F does not contain any element of Q in the scope of negation as failure. Then Z �→ Z \ Q is a 1-1 
correspondence between the answer sets for �1 ∪ �2 and the answer sets for �1.

They also prove that adding constraints eliminate undesired answer sets.

Proposition 2 of [33]. For any program � and a formula F , a set Z of literals is an answer set for � ∪ {← F } iff Z is an 
answer set for � and does not satisfy F .

A.4. Defining reachability in ASP

A binary relation p over a finite set C of object constants, can be viewed as a digraph where the vertices denote elements 
of C and the edges denote the relation p. In this graph, the reachability of a vertex x from a given vertex Source by a path 
whose length is at most k can be defined in ASP as follows:

reachable(1, x) ← p(Source, x)
reachable(n + 1, x) ← p(y, x), reachable(n, y). (1 ≤ n < k)

(A.2)

Let us denote this definition of reachability by Def . The following lemmas state that this definition is correct.
Consider programs that consist of rules of the form

Head ← Body,

where Head is a literal or ⊥ and Body is a formula.
For every n (1 ≤ n < k), let Rn denote the set of vertices reachable from Source by a path defined with respect to p and 

whose length is at most n.

Lemma 1. Let � be a positive program that does not contain atoms of the form reachable(n, y) in the heads of rules, and that defines 
the binary relation p. Let X be the answer set for � ∪ Def . For every n (1 ≤ n < k) and for every vertex y, reachable(n, y) ∈ X iff 
y ∈ Rn.

Lemma 2. Let � be a program that does not contain atoms of the form reachable(n, y) in the heads of rules, and that defines the 
binary relation p. If X is an answer set for � ∪ Def then every element of the set {y : reachable(n, y) ∈ X, 1 ≤ n < k} is reachable from 
Source by a path whose length is at most n. Furthermore, for every vertex x reachable from Source by a path whose length is at most n
(1 ≤ n < k), there is some answer set X for � ∪ Def such that x is in {y : reachable(n, y) ∈ X, 1 ≤ n < k}.
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Proof of Lemma 1. Note that, since � is a positive program, it does not contain negation as failure. Let X be the answer 
set for � ∪ Def . Take n to be any number such that 1 ≤ n < k, and take x to be any vertex. We need to prove that 
reachable(n, y) ∈ X iff y ∈ Rn .

Left-to-right. Since there is no negation as failure in �, X can be characterized as the union of 
⋃k

i=0 Xi of the sequence of 
sets of literals defined as follows: X0 = ∅; Xi+1 is the set of all literals L such that � ∪ Def contains a rule L ← Body with 
Body satisfied by Xi .

We show by induction on i that reachable(i, y) ∈ Xi implies y ∈ Ri . If i = 0, the assertion holds since X0 = ∅. Assume that, 
for every x and i, reachable(i, y) ∈ Xi iff y ∈ Ri . Take any atom reachable(i +1, y) from Xi+1. Take a rule reachable(i +1, y) ←
Body in � ∪ Def such that Xi satisfies Body. Since � does not contain atoms of the form reachable(n, y) in the heads of 
rules, this rule belongs to Def . Since i > 0, Body = p(y, x), reachable(i, y). Then p(y, x), reachable(i, y) ∈ Xi ⊆ X . By induction 
hypothesis, y ∈ Ri . Then, x is reachable from Source by a path of length i + 1.

Right-to-left. Since X = ⋃k
i=0 Xi , it is sufficient to prove that, for every i > 0, y ∈ Ri implies reachable(i, y) ∈ X . The proof is 

by induction on i. When j = 1, y ∈ R1 so that p(Source, y) ∈ X . Since X is closed under Def , it follows that reachable(1, y) ∈
X1. Assume that, for every i > 1, y ∈ Ri implies reachable(i, y) ∈ X . Take x from Ri+1. Then there is a vertex y in Ri such 
that there is an edge from y to x. Then p(y, x) ∈ X and, by induction hypothesis, reachable(i, y) ∈ X . Since X is closed under 
Def , it follows that reachable(i + 1, y) ∈ X . �
Proof of Lemma 2. Let � be a program that may contain negation as failure but that does not contain atoms of the form 
reachable(n, y) in the heads of rules. Suppose that � defines a binary relation p. That is, every answer set Y for � char-
acterizes a binary relation p. For every n (1 ≤ n < k) and Y , let RY ,n denote the set of vertices reachable from Source by a 
path defined with respect to p defined in Y , and whose length is at most n.

Let X be an answer set for � ∪ Def . Then X is the answer set for �X ∪ Def X = �X ∪ Def . Let Q be the set of all atoms of 
the form reachable(n, y). By Proposition 3 of [33], X \ Q is the answer set for �X and thus defines p. By Lemma 1 applied 
to �X , for every n and y, reachable(n, y) ∈ X iff y ∈ R X\Q ,n . �
A.5. Proof of Proposition 1

Let us recall the definition (5) of the global location of a block vertically in a tower on the table:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t)
globalPos(b, v,h, x, t) ← globalPos(b′, u,h−1, x, t),on(b, v,b′, u, t),

and the definition (6) of the global location of a block horizontally with respect to a block at the same height:

globalPos(b, v+1,h, x+1, t) ← globalPos(b, v,h, x, t) (v<size(b))

globalPos(b, v−1,h, x−1, t) ← globalPos(b, v,h, x, t) (v>1)

Proposition 1. Let �′ be the disjunctive program shown in Figs. 7–11. Then, for every block b supported by the table, rules (5) ∪
(6), when added to �′ , correctly describe its global position with respect to its height h from the table and the distance x from the 
leftmostside of the table.

The proof of Proposition 1 follows from the observation that �′ does not contain atoms of the form globalPos(b, v, h, x, t)
in the heads of its rules, that the disjunctive program �′ can be equivalently transformed into a nondisjunctive program 
(Theorem 1 of [28]), and the correctness of the recursive reachability definition (Lemma 2).

Proof. Let �′ be the disjunctive program shown in Figs. 7–11. First, observe that, thanks to Theorem 1 of [28], each 
disjunctive rule like

pick(a,b, t) ∨ ¬pick(a,b, t) ←
describing the occurrences of an action can be replaced a pair of nondisjunctive rules as follows

pick(a,b, t) ← not ¬pick(a,b, t)
¬pick(a,b, t) ← not pick(a,b, t).

Let �′′ denote this nondisjunctive program.
With the program (5) ∪ (6), at every time step t and for every block b supported by the table, we identify the global 

locations of a unit space v of a block b by its height h from the table, and by the number x of unit spaces it is from the 
leftmostside of the table.

In fact, at every time step t , we consider an immediate-connectedness relation p between a block unit 〈b, v〉 and a 
block/table unit 〈b′, v ′〉 iff one of the following three conditions hold: (i) 〈b, v〉 is located on 〈b′, v ′〉 (specified by atoms of 
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the form on(b, v, b′, v ′, t)), (ii) b = b′ and v ′ = v + 1, or (iii) b = b′ and v ′ = v − 1. Then, at every time step t , for every 
table unit 〈Table, x〉, we identify the block units reachable from it with a program similar to (A.2) and define their global 
locations recursively with respect to height and width. Base case: Take any block b on the table and any unit space v of that 
block. Suppose that the block unit 〈b, v〉 is located x units from the leftmostside of the table. Then the global location of 
〈b, v〉 is (0, x). This is expressed in the first rule of (5). Inductive step: Suppose that the global location of 〈b′, v ′〉 is (h, x). 
If (i) holds then the global location of 〈b, v〉 is (h + 1, x). This is expressed in the second rule of (5). If (ii) holds, then the 
global location of 〈b, v〉 is (h, x + 1). This is expressed in the first rule of (6), respecting the size of the block. If (iii) holds, 
then the global location of 〈b, v〉 is (h, x − 1). This is expressed in the second rule of (6), respecting the size of the block.

Then this definition of reachability of block units from table/box units based on the immediate-connectedness is correct 
thanks to Lemma 2 applied to �′′ . For every answer set X for �′′ ∪ (5) ∪ (6), the following holds:

• For every time t , for every unit space v ′ of a block b′ globally located at a distance x from the leftmostside of the table 
at time t , 〈b′, v ′〉 ∈ {〈b, v〉 : globalPos(b, v, h, x, t) ∈ X} iff the unit 〈b′, v ′〉 is reachable from the unit 〈Table, x〉 with a 
tower of height h based on the immediate-connectedness relation.

• For every time t , for every unit space v ′ of a block b′ globally located at a height h from the table at time t , 
〈b′, v ′〉 ∈ {〈b, v〉 : globalPos(b′, v, h, x, t) ∈ X} iff the unit 〈b′, v ′〉 is reachable from the unit 〈b′, v〉 with the immediate-
connectedness relation. �

A.6. Proof of Proposition 2

Let us recall that the empty spaces above the table are defined in rules (7) as the global positions (h, x) not occupied by 
any blocks:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0).

Proposition 2. Let �′ be the disjunctive program shown in Figs. 7–12, except for rules (7). Then, for every time step t and for every 
block b supported by the table, rules (7), when added to �′, correctly describe the global positions (h, x) of empty spaces at time t.

Proof. Let �′ be the disjunctive program shown in Figs. 7–12, except for rules (7). First, observe that, thanks to Theorem 1 
of [28], each disjunctive rule like

pick(a,b, t) ∨ ¬pick(a,b, t) ←
describing the occurrences of an action can be replaced a pair of nondisjunctive rules as follows

pick(a,b, t) ← not ¬pick(a,b, t)
¬pick(a,b, t) ← not pick(a,b, t).

Let �′′ denote this nondisjunctive program.
Note that �′′ does not contain atoms of the form empty(h, x, t) in the heads of its rules. Then we can replace atoms of 

the form empty(h, x, t) in the bodies of rules in �′′ by expressions of the form #count{b : box(b), globalPos(b, v, h, x, t)} = 0, 
where h > 0. Let �′′′ denote this nondisjunctive program.

Then, by Proposition 3 of [33], adding the definition (7) to �′′′ ensures that the answer sets for �′′′ are conservatively 
extended to define empty spaces. �
A.7. Proof of Proposition 3

Let us recall the definition (8) of supportedness,

supported(b, l, t) ← onAux(b, l, t).
supported(b, l, t) ← onAux(b, l′, t), supported(l′, l, t) (b �=l′),

and the acyclicity constraint (9).

← supported(b,b, t).

Proposition 3. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (8), when added to �, correctly describe the sup-
portedness of blocks by other blocks or by the table. Furthermore, adding constraints (9) to � ∪ (8) guarantees the desired feature D1 
(i.e., no circular configuration of blocks occurs in construction at any time step 0..T − 1).
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The proof follows from (i) Theorem 1 of [28] about an equivalent representation of disjunctive rules about occur-
rences/nonoccurrences of actions by nondisjunctive rules, (ii) the observation that � does not contain atoms of the form 
supported(b, l, t) in the heads of its rules, and (iii) Propositions 4 and 5 of [29] about the correctness and well-foundedness 
of the transitive closure of a relation defined recursively in ASP.

Proof. The proof consists of two parts: correctness of the supportedness definition, and guarantee of no circular configura-
tions.

Part 1. The correctness of supportedness definition follows from Proposition 4 of [29] about the correctness of the transitive 
closure of a relation defined recursively in ASP.

Let � be the disjunctive program that describes the construction domain, as shown in Figs. 7–12. First, observe that, 
thanks to Theorem 1 of [28], each disjunctive rule like

pick(a,b, t) ∨ ¬pick(a,b, t) ←
describing the occurrences of an action can be replaced a pair of nondisjunctive rules as follows

pick(a,b, t) ← not ¬pick(a,b, t)
¬pick(a,b, t) ← not pick(a,b, t).

Let �′ denote this nondisjunctive program.
Let Def be the supportedness definition (8). Then, by Proposition 4 of [29], for every answer set X for i′ ∪ Def , the 

following holds:

At each time step t , {〈b, l〉 : supported(b, l, t) ∈ X} is the transitive closure of {〈x, y〉 : onAux(b, l, t) ∈ X}.

Therefore, the supportedness definition (8) is correct.

Part 2. By Proposition 5 of [29], adding the constraint

supported(b,b, t)

to �′ ∪ Def ensures the well-foundedness of the set {〈x, y〉 : onAux(x, y) ∈ X}, hence, spurious circular configurations of 
blocks. �
A.8. Proof of Proposition 4

Let us recall the definition (10) that identify blocks being supported by the table, being supported by a block being held 
by the robot, or being held by the robot:

supportedAux(b,1, t) ← supported(b,Table, t),
#count{a : arm(a),holding(a,b, t)} = 0

supportedAux(b,2, t) ← supported(b,b′, t),holding(a,b′, t) (b �= b′)
supportedAux(b,3, t) ← holding(a,b, t)

and add the constraints (11) to ensure that one of these three cases should hold for each block b:

← #count{x : supportedAux(b, x, t)} < 1
← #count{x : supportedAux(b, x, t)} > 1

Proposition 4. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (10), when added to � ∪ (8) ∪ (9), correctly describe 
the supportedness of blocks and subassemblies by other blocks, by the table, or by the robot. Furthermore, adding constraints (11) to 
� ∪ (8) ∪ (9) ∪ (10) guarantees the desired feature D2 (i.e., no flying blocks, and no blocks supported by both the table and the robot 
at any time step 0..T − 1).

Proof. Observe that the program � ∪ (8) ∪ (9) does not contain atoms of the form supportedAux(b, t) in the heads of its 
rules.

Then, by Proposition 3 of [33], rules (10), when added to � ∪ (8) ∪ (9), correctly describe the supportedness of blocks 
and subassemblies by other blocks: answer sets for � ∪ (8) ∪ (9) ∪ (10) are conservative extensions of � ∪ (8) ∪ (9).

Furthermore, by Proposition 2 of [33], adding constraints (11) to � ∪ (8) ∪ (9) ∪ (10) eliminates answer sets for � ∪ (8) ∪
(9) ∪ (10) that do not satisfy the desired feature D2. Therefore, adding constraints (11) guarantees D2. �
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A.9. Proof of Proposition 5

Proposition 5. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown 
in Fig. 16 about supportedness of blocks/subassemblies. Then adding constraints (12) ∪ (13) ∪ (14) to �′ further ensures the desired 
features D3–D5 about occurrences of actions.

Proof. Propositions 3 and 4 ensure constructions that satisfy supportedness constraints. By Proposition 2 of [33], adding 
constraints (12) ∪ (13) ∪ (14) to �′ eliminates its answer sets that do not satisfy any of D3–D5. Therefore, adding these 
constraints guarantees D3–D5. �
A.10. Proof of Proposition 6

Proposition 6. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, and by adding the program shown 
in Fig. 16 about supportedness of blocks/subassemblies. Suppose that the stability checking algorithm � is correct (i.e., the construction 
is stable iff � returns True). Then adding rules (15) to �′ ensures that, at every time step t, every configuration of blocks assembled on 
a flat surface (e.g., table) or being carried by a gripper is stable.

Proof. Propositions 3 and 4 ensure constructions that satisfy supportedness constraints and thus prevent spurious struc-
tures, like flying blocks/subassemblies, circular configurations of blocks, or blocks being supported by both the table and 
the robot. Then the proof of Proposition 6 follows from an application of Proposition 2 of [33] about the elimination of 
spurious models by adding constraints: adding rules (15) to �′ eliminates its answer sets where the blocks assembled on a 
flat surface are not stable or where the blocks being carried are not stable. �
A.11. Proof of Proposition 7

Proposition 7. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′ be the 
program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown in Fig. 16 about supportedness 
of blocks/subassemblies, and by adding the constraints (15) about stability of the construction. Then, adding rules (16) ∪ (17) ∪ (18) to 
�′ ensures a stable symmetric bridge (i.e., a construction that satisfies the condition D6) at time step T .

Proof. Propositions 3–6 ensure constructions that satisfy supportedness and stability constraints. By Theorem 1 of [28], the 
program �′ ∪ (16) can be transformed into an equivalent nondisjunctive program �′′ . By Proposition 3 of [33], adding the 
definition (16) to �′′ ensures that the answer sets for �′ are conservatively extended to define symmetric supportedness 
relation. Proposition 4 of [29] ensures that the transitive closure of symmetric supportedness, i.e., definition connectedness, is 
correct. Then, further adding (17) extends the answer sets for �′′ ∪ (16) by connectedness relation. By Proposition 2 of [33], 
the answer sets that violate D6 at time step T are eliminated. Therefore, adding rules (16) ∪ (17) ∪ (18) to �′′ ensures D6, 
and thus a stable symmetric bridge, at time step T . �
A.12. Proof of Proposition 8

Proposition 8. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′
be the ASP program obtained from � by adding the supportedness and stability constraints (and, in case of bridge construction, also 
the connectedness constraints), and the ramification rules as described above. Then every robot construction plan that satisfies these 
desired properties and whose makespan is at most T −1 is characterized by an answer set for �′.

Proof. Due to the representation methodology of the program, candidate robot construction plans are generated by the part 
of the program that does not include any constraints. Supported by Proposition 2 of [33], each constraint then eliminates 
some of these candidates that violate desired features of a construction and its plan. No constraint in �′ eliminates a valid 
robot construction plan. �
Appendix B. Benchmark instances for construction problems and their solutions

In this appendix, we present a set of benchmark instances associated with challenging construction problems. Some 
of these benchmarks have been introduced by Fahlman [36]. We introduce an extended set of construction instances as 
changing benchmarks and present solutions to these problems computed using our hybrid planning approach.

For some problems, a stable final state and a plan cannot be computed by dlvhex within the time threshold of 5000 
seconds, as mentioned in Section 6. In such cases, we also provide a partial plan (e.g., first few actions) as part of input to 
further guide the search so that a stable final state and a plan are computed.

As discussed in Section 4.5, unless specified otherwise, the ASP modeling of the construction problem allows true concur-
rency. We can explicitly specify noconcurrency constraints, based on the capabilities of manipulators or desired conditions 
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Fig. B.27. Scenario 1 – Incorporation of sub-assemblies into the final design.

Fig. B.28. Scenario 2 [36] [Fig. 1.4] – Pre-assembly of movable a stable sub-structure.

of the construction process. For instance, considering the difficulty of synchronization of actions, it may be desired that a 
robotic manipulator does not replace a block with another block at the same time. In our experiments, we take into account 
such constraints about occurrences of actions. Without noconcurrency constraints, the plans usually get shorter and thus 
their computation times decrease further; this allows computation of solutions for scenarios within time threshold.

dlvhex is a sophisticated system with many options that can be fine tuned for better performance. As mentioned in 
Section 6, in our experiments, we have tried different settings of the solver’s configuration (i.e., handy or jumpy). Further 
fine tuning of dlvhex might also allow computation of solutions for scenarios within time threshold.

In Scenarios 1–8, the weights of the uniform blocks are assumed to be as follows: W small = 1 unit, Wmedium = 3 units, 
and Wlarge = 5 units.

B.1. Sub-assembly manipulation

Sub-assembly manipulation comprises of two or more blocks being manipulated together. In Fig. B.27, a sub-assembly 
consisting of the blocks M1, S4 and S5 is being manipulated, as the robot picks the block M1 and places it on top of block 
S1. As part of hybrid planning, it is challenging to decide for sub-assembly construction, and to ensure the stability of the 
structures. Note that it is also challenging to represent effects of manipulating a sub-assembly, due to ramifications.

Scenario 1 (Fig. B.27)
The construction problem in Fig. B.27 involves incorporation of sub-assemblies into the final design.
The initial state of all the blocks is specified by the following facts:

init(M1,1,Table,1).init(S4,1, M1,1).init(S5,1, M1,3).init(S3,1,Table,6).

init(L1,3, S3,1).init(S1,1, L1,1).init(S2,1, L1,5).init(M2,1,Table,9).

init(S6,1, M2,1).init(S7,1, M2,3,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).goal(S2, L1).goal(M1, S1).

goal(M2, S2).goal(S4, M1).goal(S5, M1).goal(S6, M2).goal(S7, M2).

For such an instance, a plan for a bimanual robot, reads as follows:

0 : pick(Left, M1), pick(Right, M2).
1 : placeOn(Left, M1, 2, S1, 1), placeOn(Right, M2, 2, S2, 1).

Scenario 2 (Fig. B.28)
The construction problem in Fig. B.28 requires first the pre-assembly of movable a stable sub-structure on the table.
The initial state of all the blocks is specified by the following facts:

init(L1,1,Table,1).init(S1,1, L1,3).init(S2,1, S1,1).init(S3,1, S2,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).goal(S2, L1).

For such a problem instance, our planner generates the following plan:
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Fig. B.29. Scenario 3 [36][Fig. 1.9] – Disassembly of pre-assembled parts.

Fig. B.30. Scenario 4 – The use of permanent counter weights to balance out the structure.

0 : pick(Left, S3).
1 : placeOn(Left, S3, 1, T able, 6), pick(Right, S2).
2 : pick(Left, S1), placeOn(Right, S2, 1, L1, 1).
3 : placeOn(Left, S1, 1, L1, 5).
4 : pick(Left, L1).
5 : placeOn(Left, L1, 3, S3, 1).

Note that special attention needs to be paid as to where blocks are placed on L1 to ensure stability.

B.2. Disassembly

Construction problems not only involve building new structures by stacking blocks or sub-assemblies, but also may 
require a disassembly of pre-assembled parts to reach the goal.

Scenario 3 (Fig. B.29)
The construction problem in Fig. B.29 cannot be solved by moving one block at a time as in the Blocks World, since the 

stability of the overall structure needs to be preserved while executing the plan. It is required to first move the block M1
together with the blocks above it.

Initial state of all the boxes is specified by the following facts:

init(S1,1,Table,1).init(M1,1, S1,1).init(S2,1, M1,1).init(S3,1, S2,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(M1,Table).goal(S1,Table).goal(S3, S1).goal(S2, S3).

Generated plan is as follows:

0 : pick(Left, M1).
1 : placeOn(Left, M1, 1, T able, 2).
2 : pick(Right, S3).
3 : placeOn(Right, S3, 1, S1, 1), pick(Left, S2).
4 : placeOn(Left, S2, 1, S3, 1).

B.3. Counter weights

Counter weights may be required to temporarily or permanently balance a structure, so that it remains stable during and 
at the end of the construction. Therefore, deciding for the use of counter weights as part of a hybrid plan is challenging.

Scenario 4 (Fig. B.30)
The construction problem in Fig. B.30 requires use of permanent counter weights to balance out the structure.
The initial configuration is expressed by the following set of facts:

init(S4,1,Table,1).init(S2,1,Table,2).init(S3,1,Table,5).

init(S5,1, S4,1).init(S1,1, S2,1).init(L1,3, S3,1).
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Fig. B.31. Scenario 5 – The use of a temporary counter weight.

Fig. B.32. Scenario 6 – Scaffolding.

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S4, L1).goal(S1, L1).goal(S5, S4).

Generated plan is as follows:

0 : pick(Left, S4).
1 : placeOn(Left, S4, 1, L1, 3), pick(Right, S1).
2 : pick(Left, S2), placeOn(Right, S1, 1, L1, 4).
3 : placeOn(Left, S2, 1, L1, 2).

It is interesting to observe that the block S4 (and the block S5 above it) is moved onto L1 as a counter weight, so that 
the blocks S2 and S1 can be moved onto L1 appropriately.

Scenario 5 (Fig. B.31)
The construction problem in Fig. B.31 requires use of a temporary counter weight M1 to balance the structure.
The initial configuration is expressed by the following set of facts:

init(L1,1,Table,1).init(S1,1,Table,6).init(M1,1,Table,7).

init(S2,1, S1,1).init(S3,1, S2,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S1, L1).goal(M1,Table).

The generated plan is:

0 : pick(Left, S3), pick(Right, L1).
1 : placeOn(Left, S3, 1, T able, 3).
2 : pick(Left, M1), placeOn(Right, L1, 3, S3, 1).
3 : placeOn(Left, M1, 1, L1, 2), pick(Right, S2).
4 : pick(Left, S1), placeOn(Right, S2, 1, L1, 1).
5 : placeOn(Left, S1, 1, L1, 5), pick(Right, M1).
6 : placeOn(Right, M1, 1, T able, 6).

B.4. Temporary scaffolding

Similar to counter weights, scaffolding may be needed to temporarily support a construction. In scaffolding, instead of 
supporting the structure from above by introducing a heavy object, the structure is supported from below. Deciding for 
temporary use of scaffolds as a part of a hybrid plan is challenging.

Scenario 6 (Fig. B.32)
The construction problem in Fig. B.32 necessitates scaffolding, since there does not exist a heavy box or multiple boxes 

that can be used as a counter weight in this scenario.
The initial configuration is expressed by the following set of facts:

init(S1,1,Table,1).init(S2,1,Table,2).init(L1,1,Table,3).

init(S3,1, S1,1).init(S4,1, S2,1).
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Fig. B.33. Scenario 7 – True concurrency.

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S1, L1).goal(S4,Table).

Generated plan is:

0 : pick(Left, L1), pick(Right, S3).
1 : placeOn(Right, S3, 1, T able, 5).
2 : pick(Right, S4).
3 : placeOn(Right, S4, 1, T able, 7).
4 : placeOn(Left, L1, 3, S3, 1), pick(Right, S1).
5 : placeOn(Right, S1, 1, L1, 1), pick(Left, S2).
6 : placeOn(Left, S2, 1, L1, 5).
7 : pick(Left, S3).
8 : placeOn(Left, S3, 1, T able, 4).

B.5. True concurrency of actions

For some construction problems, multiple robots are required to perform truly concurrent (non-serializable) actions 
to achieve a task. In particular, it may happen that if some blocks or sub-assemblies are not placed concurrently, the 
structure becomes unstable. Allowing true concurrency in planning is a challenging problem, from the perspectives of both 
representation and reasoning.

Scenario 7 (Fig. B.33)
Consider the construction problem in Fig. B.33, where M1 and M2 are placed by two concurrent actions. This problem 

shows the importance of true concurrency.
The initial configuration is expressed by the following set of facts:

init(M1,1,Table,1).init(S1,1,Table,4).init(S5,1,Table,5).init(S3,1,Table,8).

init(S4,1,Table,11).init(S2,1,Table,12).init(M2,1,Table,13).init(L1,3, S3,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S1,Table).goal(S2,Table).goal(S3,Table).
goal(S5, S1).goal(L1, S3).goal(S4, S2).

goal(M1, S5).goal(M1, L1).goal(M2, L1).goal(M2, S4).

Generated plan is:

0 : pick(Left, S5), pick(Right, S4).
1 : placeOn(Left, S5, 1, S1, 1), placeOn(Right, S4, 1, S2, 1).
2 : pick(Left, M1), pick(Right, M2).
3 : placeOn(Left, M1, 1, S1, 1), placeOn(Right, M2, 3, S4, 1).

When the box M2 is placed on S4, as a direct effect the third unit space of M2 is on the first unit space of S4; as its 
indirect effects, the first unit space of M2 is on the fifth unit space of L1. Same effect happens when M1 is placed on S5.

B.6. Ramifications of actions

Representing and reasoning about indirect effects (ramifications) of actions are challenging for planning.
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Fig. B.34. Scenario 8 – Challenging ramifications.

Scenario 8 (Fig. B.34)
The construction problem in Fig. B.34 shows the importance of properly handling ramifications. Here, when L2 is placed 

on S2 at the final step, as an indirect effect of this action, L2 becomes on top of the block S7 as well.
The initial configuration is expressed by the following set of facts:

init(S3,1,Table,3).init(S1,1,Table,6).init(S2,1,Table,7).

init(S4,1,Table,8).init(S5,1,Table,9).init(L2,1,Table,10)

init(L1,3, S3,1).init(S6,1, S5,1).init(S7,1, S6,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).

goal(S2, L1).goal(S4, S1).goal(S5,Table).
goal(S6, S5).goal(S7, S6).goal(L2, S2).goal(L2, S7).

The generated plan is:

0 : pick(Left, S1), pick(Right, S2).
1 : placeOn(Left, S1, 1, L1, 1), placeOn(Right, S2, 1, L1, 5).
2 : pick(Left, S4), pick(Right, L2).
3 : placeOn(Left, S4, 1, S1, 1), placeOn(Right, L2, 1, S2, 1, 1).

B.7. Overhang scenarios

There may be multiple goal configurations of blocks depending on the desired conditions about the final structure, and all 
of them may not be stable. In such cases, finding a stable goal configuration is a challenge. For instance, the determination 
of the maximum overhang achievable by a stack of identical blocks [47,76] with some blocks used as counterweights [75,77]
is a 150 years old mathematical puzzle with recent solutions.

In the maximum overhang scenarios, in addition to the determination of a stable and optimal final configuration of 
blocks, we also address the planning aspect of the construction problem required to attain the goal configuration.

In these sample scenarios listed below, the yellow blocks are used for construction purposes, while the green and purple 
blocks are used as counter weights. The yellow and purple blocks occupy 3 unit spaces and green blocks occupy 1 unit 
space. The purple and green blocks are denoted by the letters ‘C’ and ‘S’, respectively. In these examples, the purple blocks 
are assumed to be 10 times heavier than the yellow blocks, while the green blocks are assumed to be 3 times heavier than 
the yellow blocks. In particular, in Scenarios 9–11, the weights of the uniform blocks and counterweights are assumed to be 
as follows: Wmedium = 3 units, W smallcounter = 30 units, and Wmediumcounter = 30 units.

Scenario 9 (Fig. B.35)
Consider the construction problem in Fig. B.35 that involves 8 blocks with 5 of them as counter weights. The goal here 

is to achieve a maximum overhang of 3 units. This requires careful balancing of weights to stabilize the structure.
The initial configuration of blocks is given as:

init(S1,1,Table,1).init(S2,1, S1,1).init(S3,1,Table,2).init(S4,1, S3,1).

init(S5,1, S4,1).init(M1,1,Table,3).init(M2,1, M1,1).init(M3,1, M2,2).

A stable final state and a plan are computed as follows:
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Fig. B.35. Scenario 9 – Stable construction of a 3 unit overhang. (For interpretation of the colors in the figure(s), the reader is referred to the web version 
of this article.)

Fig. B.36. Scenario 10 – Stable construction of a 4 unit overhang.

0 : pick(Lef t, S3), pick(Right, S1).
1 : placeOn(Lef t, S3, 1, M2, 1), placeOn(Right, S1, 1, M3, 1).
2 : pick(Lef t, M2).
3 : placeOn(Lef t, M2, 1, M1, 2).
4 : pick(Right, M3).
5 : placeOn(Right, M3, 1, M2, 3).

Scenario 10 (Fig. B.36)
The construction problem in Fig. B.36 involves 7 blocks with 4 of them as counter weights. Here the goal is to achieve 

an overhang of 4 units.
The initial configuration of blocks is given as:

init(C1,1,Table,3).init(C2,2, C1,1).init(C3,1, C2,1).init(M1,1,Table,6).

init(M2,1, M1,1).init(M3,1, M2,1).init(C4,2, M3,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, C3), pick(Right, M3).
1 : placeOn(Lef t, C3, 2, M2, 1), placeOn(Right, M3, 1, C2, 1).
2 : pick(Lef t, M2), pick(Right, C4).
3 : placeOn(Lef t, M2, 1, M1, 2).
4 : pick(Lef t, M3).
5 : placeOn(Right, C4, 1, C2, 1), placeOn(Lef t, M3, 1, C3, 1).
6 : pick(Right, C1), pick(Lef t, M2).
7 : placeOn(Right, M2, 1, T able, 2).
8 : pick(Lef t, M3).
9 : placeOn(Lef t, M3, 1, M2, 3).
10 : placeOn(Right, C1, 1, C3, 2).
11 : pick(Lef t, M2).
12 : placeOn(Lef t, M2, 1, M1, 2).
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Fig. B.37. Scenario 11 – Stable construction of a 5 unit overhang.

Scenario 11 (Fig. B.37)
In the construction problem in Fig. B.37, an overhang of 5 units is aimed.
The initial configuration of blocks is as follows:

init(C1,1,Table,9).init(C2,2, C1,1).init(C3,1, C2,1).

init(C4,1, C3,1).init(C5,1, C4,1).init(M1,1,Table,12).

init(M2,1, M1,1).init(M3,1, M2,1).init(M4,1, M3,2).init(C6,2, M4,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, M2), pick(Right, C2).
1 : placeOn(Lef t, M2, 1, T able, 6), placeOn(Right, C2, 1, M1, 1).
2 : pick(Lef t, M3), pick(Right, C5).
3 : placeOn(Lef t, M3, 1, M2, 3).
4 : pick(Lef t, M4), placeOn(Right, C5, 2, M2, 1).
5 : placeOn(Lef t, M4, 1, T able, 2), pick(Right, C4).
6 : pick(Lef t, C2), placeOn(Right, C4, 1, C5, 2).
7 : pick(Right, M2).
8 : placeOn(Lef t, C2, 1, C6, 1), placeOn(Right, M2, 1, M1, 2).
9 : pick(Lef t, C6).
10 : placeOn(Lef t, C6, 2, C4, 1), pick(Right, M4).
11 : pick(Lef t, C1).
12 : placeOn(Lef t, C1, 2, C3, 1), placeOn(Right, M4, 1, M3, 2).

B.8. Symmetric bridge scenarios

In bridge construction scenarios, the goal is to join both sides (e.g., of a river) by a stable construction of blocks. These 
scenarios require connectedness, as well as the stability. The resulting bridges may be required to be symmetric or asym-
metric, depending on the requirements of the task.

In Scenarios 12–15, the weights of the uniform blocks and counterweights are assumed to be as follows: Wmedium =
3 units, W smallcounter = 30 units, and Wmediumcounter = 30 units.

Scenario 12 (Fig. B.38)
The bridge construction problem in Fig. B.38 involves a distance of 9 units between the two sides. There total 15 blocks 

with 6 of them being counter weights.
The initial configuration is expressed by following set of facts:

init(M1,1, LeftSide,1).init(S6,1, M1,1).init(M4,1, M1,2).init(S4,1, S6,1).

init(M6,1, M4,1).init(S2,1, S4,1).init(M7,1, M6,1).init(M2,2,RightSide,1).

init(M3,2, M2,1).init(S5,1, M2,3).init(M5,1, M3,1).init(S3,1, S5,1).

init(M8,1, M5,1).init(S1,1, S3,1).init(M9,2, M8,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, M6), pick(Right, S4).
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Fig. B.38. Scenario 12 – Stable construction of a 9 unit bridge.

1 : placeOn(Lef t, M6, 1, M4, 2).placeOn(Right, S4, 1, M4, 1).
2 : pick(Lef t, M5), pick(Right, S3).
3 : placeOn(Lef t, M5, 3, M3, 2).placeOn(Right, S3, 1, M3, 3).
4 : pick(Lef t, M7), pick(Right, S2).
5 : placeOn(Lef t, M7, 1, M6, 2).placeOn(Right, S2, 1, M6, 1).
6 : pick(Lef t, M8), pick(Right, S1).
7 : placeOn(Lef t, M8, 3, M5, 2).placeOn(Right, S1, 1, M5, 3).
8 : pick(Lef t, M9).
9 : placeOn(Lef t, M9, 1, M7, 3).

Scenario 13 (Fig. B.39)
The bridge construction problem in Fig. B.39 has 7 units distance between the sides. There are 13 blocks with 6 of them 

being counter weights.
The initial configuration is given by the following set of facts:

init(M1,1, LeftSide,1).init(M2,1, M1,1).init(M3,1, M2,1).init(M4,1,RightSide,1).

init(M5,1, M4,1).init(M6,1, M5,1).init(M7,2, M6,1).init(C6,1,RightSide,5).

init(C5,2, C6,1).init(C4,1, C5,2).init(C3,2, C4,1).init(C2,1, C3,2).init(C1,2, C2,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, M2), pick(Right, M5).
1 : placeOn(Lef t, M2, 1, M1, 2), placeOn(Right, M5, 2, M4, 1)

2 : pick(Lef t, M3), pick(Right, C3).
3 : placeOn(Lef t, M3, 1, M2, 3), placeOn(Right, C3, 2, M2, 1).
4 : pick(Lef t, M6), pick(Right, C6).
5 : placeOn(Lef t, M6, 3, M5, 1), placeOn(Right, C6, 2, M5, 3).
6 : pick(Lef t, M7).
7 : placeOn(Lef t, M7, 3, M6, 1).

B.9. Asymmetric bridge scenarios

Asymmetric bridge scenarios are similar to the bridge construction scenarios in terms of their goal conditions. The only 
difference in these scenarios is that both sides have different heights.

Scenario 14 (Fig. B.40)
This bridge construction scenario in Fig. B.40 involves 9 blocks with 4 being counter weights. The right side is 2 units 

higher than left side and the sides are 4 units apart.
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Fig. B.39. Scenario 13 – Stable construction of a 7 unit bridge.

Fig. B.40. Scenario 14 – Stable construction of a 4 unit asymmetric bridge.

The initial configuration is given by the following set of facts:

init(S1,1, LeftSide,1).init(S2,1, S1,1).init(M2,1, M1,1).init(S3,1, S2,1).

init(M3,1, M2,1).init(S4,1, S3,1).init(M4,2,RightSide,1).init(M5,1, M4,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, M2).
1 : placeOn(Lef t, S1, 1, M1, 1).placeOn(Right, M2, 1, M1, 2).
2 : pick(Lef t, S2), pick(Right, M3).
3 : placeOn(Lef t, S2, 1, M2, 1).placeOn(Right, M3, 1, M2, 2).
4 : pick(Lef t, S3), pick(Right, M5).
5 : placeOn(Lef t, S3, 1, M3, 1).placeOn(Right, M5, 1, M3, 3).

Scenario 15 (Fig. B.41)
The bridge construction scenario in Fig. B.41 has 9 blocks with 4 being counter weights. The right side is 4 units higher 

than left side and the sides are 5 units apart.
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Fig. B.41. Scenario 15 – Stable construction of a 5 unit asymmetric bridge.

Fig. B.42. Scenario 16 – Maximizing the height of block S3 in a stack of 8 blocks.

The initial configuration is given by the following set of facts:

init(C4,1, LeftSide,1).init(S1,1, LeftSide,4).init(S2,1, S1,1).

init(S3,1, S2,1).init(S4,1, S3,1).init(S5,1, S4,1).

init(S6,1, S5,1).init(S7,1, S6,1).init(M1,1, LeftSide,5).

init(M2,1, M1,1).init(M3,1, M2,1).init(M4,1, M3,1).init(M5,1, M4,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S6), pick(Right, M2).
1 : placeOn(Lef t, S6, 1, M1, 1), placeOn(Right, M2, 1, M1, 2).
2 : pick(Lef t, S5), pick(Right, M3).
3 : placeOn(Lef t, S5, 1, M2, 1), placeOn(Right, M3, 1, M2, 2).
4 : pick(Right, S3).
5 : placeOn(Right, S3, 1, C4, 2).
6 : pick(Lef t, C4), pick(Right, M4).
7 : placeOn(Lef t, C4, 1, S7, 1), placeOn(Right, M4, 1, M3, 2).
8 : pick(Lef t, M5), pick(Right, S1).
9 : placeOn(Lef t, M5, 1, M4, 3), placeOn(Right, S1, 1, M4, 1).

B.10. Tower stacking

In tower staking benchmarks, the goal is to maximize or minimize the height of a particular block in a stack of a given 
number of blocks.

In Scenarios 16–21, the weights of the uniform blocks are assumed to be as follows: W small = 3 units, Wmedium = 3 units, 
and Wlarge = 5 units.

Scenario 16 (Fig. B.42)
The construction problem in Fig. B.42 aims to maximize the height of block S3 in a stack. There are 8 blocks in the 

stack. Initially, all the blocks are on the table.
A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, M2).
1 : placeOn(Lef t, S1, 1, M1, 2).
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Fig. B.43. Scenario 17 – Maximizing the height of block L2 in a stack of 6 blocks.

Fig. B.44. Scenario 18 – Maximizing the height of block L1 in a stack of 4 blocks.

2 : pick(Lef t, S2), placeOn(Right, M2, 2, S1, 1).
3 : placeOn(Lef t, S2, 1, M2, 2), pick(Right, S4).
4 : placeOn(Right, S4, 1, S2, 1, 1), pick(Lef t, S5).
5 : placeOn(Lef t, S5, 1, S4, 1), pick(Right, M3).
6 : placeOn(Right, M3, 2, S5, 1), pick(Lef t, S3).
7 : placeOn(Lef t, S3, 1, M3, 2).

Scenario 17 (Fig. B.43)
The construction problem in Fig. B.43 aims to maximize the height of block L2 in a stack. There are 6 blocks in the stack. 

Initial state and the computed goal state is given in Fig. B.43.
A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
1 : placeOn(Lef t, S1, 1, L1, 1), placeOn(Right, S2, 1, L1, 4)

2 : pick(Lef t, S3), pick(Right, S4).
3 : placeOn(Lef t, S3, 1, S1, 1), placeOn(Right, S4, 1, S2, 1).
4 : pick(Lef t, L2).
5 : placeOn(Lef t, L2, 1, S3, 1).

Scenario 18 (Fig. B.44)
The construction problem in Fig. B.44 aims to maximize the height of block L1 in a stack. There are 4 blocks in the stack. 

Here, L1 cannot be directly placed on the right side, as there is not enough space, that is, the single unit space on the left 
side would cause block L1 to fall without proper support. Note that in this problem specification, there is no requirement 
that the two sides should be connected. Initial state and the computed goal state are given in Fig. B.44.

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S2), pick(Right, S1).
1 : placeOn(Lef t, S2, 1, S3, 1).
2 : pick(Lef t, L1), placeOn(Right, S1, 1, S2, 1).
3 : placeOn(Lef t, L1, 1, S1, 1).

Scenario 19 (Fig. B.45)
The construction problem in Fig. B.45 aims to maximize the height of block L1 in a stack. There are 4 blocks in the stack. 

Here, there exist two unit spaces available on the right side, as opposed to only one unit space in the previous benchmarks. 
Once again, there is no requirement that the two sides should be connected. Initial state and the computed goal state are 
given in Fig. B.45.

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
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Fig. B.45. Scenario 19 – Maximizing the height of block L1 in a stack of 4 blocks.

Fig. B.46. Scenario 20 – Minimizing the height of block S3 in a stack of 8 blocks.

Fig. B.47. Scenario 21 – Minimizing the height of block L2 in a stack of 7 blocks.

1 : placeOn(Lef t, S1, 1, Right Side, 1), placeOn(Right, S2, 1, Right Side, 2).
2 : pick(Lef t, L1).
3 : placeOn(Lef t, L1, 2, S1, 1).

Scenario 20 (Fig. B.46)
This construction problem in Fig. B.46 aims to minimize the height of block S3 in a stack. There are total 8 blocks in the 

stack. Please note that, in the problem specification its is required that S3 is part of the stack, that is, it cannot be placed 
directly on the ground/table. Initially, all the boxes are on the table.

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
1 : placeOn(Lef t, S1, 1, M1, 2), placeOn(Right, S2, 1, M1, 1).
2 : pick(Lef t, S3), pick(Right, M2).
3 : placeOn(Lef t, S3, 1, M1, 3).
4 : placeOn(Right, M2, 1, S1, 1).
5 : pick(Lef t, S5), pick(Right, S4).
6 : placeOn(Lef t, S5, 1, M2, 1), placeOn(Right, S4, 1, M2, 2).
7 : pick(Lef t, M3).
8 : placeOn(Lef t, M3, 2, S5, 1).

Scenario 21 (Fig. B.47)
This construction problem in Fig. B.47 aims to minimize the height of block L2 in a stack. There are total 7 blocks in the 

stack. In the problem specification its is required that L2 is part of the stack. Initially, all the boxes are on the table.
A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
1 : placeOn(Lef t, S1, 1, L2, 1), placeOn(Right, S2, 1, L2, 4).
2 : pick(Lef t, S3), pick(Right, S4).
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3 : placeOn(Lef t, S3, 1, S1, 1), placeOn(Right, S4, 1, L2, 3).
4 : pick(Lef t, L2).
5 : placeOn(Lef t, L2, 1, L1, 1).
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