
Artificial Intelligence 319 (2023) 103902
Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Hybrid planning for challenging construction problems:
An Answer Set Programming approach

Faseeh Ahmad a,1, Volkan Patoglu b, Esra Erdem c,∗
a Lund University, Robotics and Semantic Systems, Lund, Sweden
b Sabanci University, Mechatronics Engineering, Istanbul, Turkey
c Sabanci University, Computer Science and Engineering, Istanbul, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 December 2020
Received in revised form 2 February 2023
Accepted 3 March 2023
Available online 9 March 2023

Keywords:
Construction problems
Hybrid planning
Answer Set Programming

We study construction problems where multiple robots rearrange stacks of prefabricated
blocks to build stable structures. These problems are challenging due to ramifications of
actions, true concurrency, and requirements of supportedness of blocks by a surface or a
robot and stability of the overall structure at all times. We propose a general elaboration
tolerant method to solve a wide range of construction problems, based on the knowledge
representation and reasoning paradigm of Answer Set Programming. This method not only
(i) determines a stable final configuration of the structure, but also (ii) computes the order
of manipulation tasks for multiple autonomous robots to build the structure from an initial
configuration, (iii) while simultaneously ensuring the requirements of supportedness and
stability at all times. We prove the soundness and completeness of our method with
respect to these properties. We introduce a set of challenging construction benchmark
instances, including construction of (uneven) bridges and overhangs, and discuss the
usefulness of our framework over these instances. Furthermore, we perform experiments
to investigate the computational performance of our hybrid method, and demonstrate the
applicability of our method using a bimanual Baxter robot.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The construction industry relies on manual labor as its primary source of productivity, while robots promise to dramati-
cally improve the speed and quality of construction work by automating repetitive and labor intensive tasks [7]. Even though
automation can improve the efficiency and the productivity of certain construction tasks, the design of the structure to be
built, planning of the robot motions, and a proper ordering of robot actions are still decided manually in these approaches.
Robotics will have a major impact on the construction industry, if these reasoning tasks can also be performed automati-
cally. For instance, it would be very beneficial if a group of autonomous search and rescue robots could automatically build
bridges in a disaster zone, by rearranging stacks of prefabricated building materials that are accessible to them.

We view construction problems as hybrid planning problems where discrete/logical task planning is combined with con-
tinuous/probabilistic feasibility checkers: find a plan (i.e., a sequence of feasible actions) to obtain a final stable configuration
of prefabricated objects satisfying some goal conditions, from a given initial configuration.

* Corresponding author.
E-mail addresses: faseeh.ahmad@cs.lth.se (F. Ahmad), volkan.patoglu@sabanciuniv.edu (V. Patoglu), esra.erdem@sabanciuniv.edu (E. Erdem).

1 F. Ahmad’s work was carried out during his graduate studies at Sabanci University.
https://doi.org/10.1016/j.artint.2023.103902
0004-3702/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2023.103902
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2023.103902&domain=pdf
mailto:faseeh.ahmad@cs.lth.se
mailto:volkan.patoglu@sabanciuniv.edu
mailto:esra.erdem@sabanciuniv.edu
https://doi.org/10.1016/j.artint.2023.103902

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 1. Ramifications involved in construction problems.

1.1. Motivating challenges

Robot construction problems involve several challenges from the perspective of planning, knowledge representation and
reasoning, and robotics. These changes include (i) representation of sophisticated ramifications of actions, (ii) reasoning
about global constraints to eliminate spurious structures during planning, (iii) integrating low-level feasibility checks into
planning to ensure stability of constructions and feasibility of plan executions, and (iv) elaboration tolerant representation
of variations of robot construction problems.

Recursive ramifications Construction problems involve a variety of sophisticated ramifications that are challenging to repre-
sent.

For instance, consider Fig. 1(a), where a robot places a large block l on top of a small block b. As a direct effect of this
action, l becomes on b. As a ramification of this action, l is located on top of other small blocks close to b, such as c and d.

Let us now consider Fig. 1(b), where a robot is moving a subassembly of blocks l, d, e and f from one location b to
another location c. As a direct of effect of this action, the base block l becomes on c. As ramifications of this action, block
l is not on b anymore, none of the blocks included in the subassembly are supported by b anymore, and all blocks in the
subassembly are supported by c now.

Representing these ramifications require concepts that are recursively defined. For instance, in the first example, to
identify which blocks are close to b and will become under l, the relative positions of blocks are not sufficient. It is necessary
to define the global positions of blocks from their relative positions; such a definition is recursive. In the second example,
it is necessary to define which blocks are supported by which other blocks in a construction, like a subassembly being
carried; such a definition is recursive as well. The capability of defining recursive concepts, like the transitive closure of
“being immediately on top of another block”, is needed for representing sophisticated ramifications.

Representing such ramifications is challenging, e.g., for PDDL-based planning: Thiebaux et al. [93, Theorem 3] prove that
“Unless EXPTIME = PSPACE, there is no compilation scheme from PDDLX (even restricted to DATALOG axioms) to PDDL
preserving plan size polynomially.”

Global recursive constraints Global state constraints are necessary to eliminate spurious configurations of blocks, such as un-
supported flying blocks or circular configurations of blocks. These constraints are necessary to ensure soundness of solutions,
but are very challenging to model, since recursive concepts are required to define such spurious configurations.

Although some global constraints are supported by PDDL (e.g., state trajectory constraints in PDDL3 [43]), global recursive
constraints as mentioned in the examples above are not supported by the current PDDL-based planners, to the knowledge
of the authors and the experts they have consulted.2 For instance, in the blocks world, suppose that we define above/2
recursively (as the transitive closure of on/2 predicate) as a derived predicate, as suggested by Edelkamp and Hoffman [22]
and by Thiebaux et al. [93]. Then expressing the global constraint “for every block x, x is not above x” is not possible
in PDDL. As the curious reader may consider, one can get around this problem by encoding all global constraints in the
preconditions of each operator and in the goal conditions; such a method is suggested by Haslum et al. [50] to compile a
type of state constraints into action descriptions. However, this method leads to a domain description that is not elaboration
tolerant3: a modification of a global constraint requires updating the preconditions of all actions and the goal condition.

Low-level feasibility checks For robotic applications, feasibility of computed plans is a pre-requisite such that these plans can
be used for real-life implementations. Along these lines, integration of stability checks into abstract planning is required to
obtain feasible construction plans.

For instance, for a feasible construction plan, based on an abstract description of goal conditions, stable goal configu-
rations should be determined for planning. In addition to the stable goal configuration, at every state reached during the
execution of a plan, the structure being constructed should be ensured to be stable. Furthermore, during each transition

2 Personal communication, Stefan Edelkamp and Robert Mattmueller, March 2019.
3 According to McCarthy [67] (http://jmc .stanford .edu /articles /elaboration .html), a formalism is elaboration tolerant to the extent that it is convenient to

modify a set of facts expressed in the formalism to take into account new phenomena or changed circumstances.
2

http://jmc.stanford.edu/articles/elaboration.html

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
from one state to another, it should be guaranteed that the structure stays stable. Therefore, the robot construction prob-
lems cannot be addressed using solely a task planner, but necessities proper use of feasibility checks together with the
planner. While essential for real-life applicability, it is challenging to combine task planning studied over discrete domains,
with feasibility checks performed in continuous domains.

Elaboration tolerance For real-world applications, the flexibility of methods is important for the users to be able to address
different variations of the problem. In robot construction, there exists a wide variety of problems that involve construction
and transfer of subassemblies, use scaffolding and counterweights to temporarily balance structures, build overhangs and
bridges that connect two surfaces. Each of these construction problems need to consider and model new phenomena. For
instance, involving subassemblies requires a new type of stability check (i.e., stability of a construction being held by the
robot), whereas building bridges requires definition of connectivity of both sides (i.e., of a river). It is challenging to represent
the construction problem in such a general way that is tolerant to all these elaborations, as much as possible.

Elaboration tolerance is an important challenge in knowledge representation and reasoning [67]. Having a flexible frame-
work that can address variations of a problem is also important for robotic applications, such as the robot construction
problems.

1.2. Our contributions

We propose a formal hybrid planning framework for robot construction problems, where multiple autonomous robots
rearrange stacks of prefabricated blocks to build stable structures, including stacks, bridges or overhangs. This framework can
address all of the challenges discussed above, thanks to the underlying knowledge representation formalism and efficient
automated reasoners of Answer Set Programming (ASP) [9]. Our ASP-based framework

• provides an elaboration-tolerant representation for a wide range of construction problems, utilizing nonmonotonicity
(e.g., for common sense law of inertia) and recursive definitions (e.g., transitive closure),

• determines a stable final configuration of blocks, utilizing semantic attachments in logical formulas (e.g., by external
atoms), and

• computes the order of manipulation tasks for multiple robots to build it from an initial configuration, in the spirit of
hybrid planning where discrete/logical task planning is combined with continuous/probabilistic feasibility checkers (e.g.,
simulation-based physics engines).

Our hybrid framework is general and flexible, in the sense that many variations of construction problems, including
optimal stacks and bridges, can be handled with the simplest kind of elaboration, i.e., the addition of new formulas [67].
It is interesting to note that our framework also provides a solution to the infamous maximum overhang puzzle [47,76,75,
77]—the problem of finding maximum overhangs with counterweights.4

Our ASP-based formal framework for robot construction problems prevents nonsensical configurations, like circular con-
figuration of blocks (Proposition 3) or flying blocks (Proposition 4), and undesired occurrences of some actions concurrently
(Proposition 5), like picking a block while placing another block on top of it.

It solves the ramification problem through recursive definitions of global locations of blocks from their relative locations
(Proposition 1), and definitions of empty spaces not occupied by any blocks (Proposition 2). Our ASP-based formal frame-
work also guarantees desired properties, like the stability of a construction (Proposition 6) and the connectedness of two
sides of a bridge (Proposition 7).

In addition to these soundness results, our ASP-based framework guarantees completeness by ensuring the computation
of all valid construction plans subject to such properties and constraints and whose lengths are less than a given maximum
makespan (Proposition 8).

To investigate the applicability of our hybrid ASP-based framework to solve a variety of problems, we introduce a diverse
set of challenging robot construction benchmark instances (Figs. B.27–B.47, Appendix B) where multiple autonomous robots
rearrange stacks of prefabricated blocks to build stable structures, including stacks, bridges or overhangs by making use
of counterweights, scaffolding, subassemblies, and true concurrency of manipulations. Such a benchmark set of different
types of construction is also a useful contribution to advance studies on robot construction problems, hybrid planning, and
knowledge representation.

Using these benchmarks, experimental evaluations are performed to understand the scalability of our hybrid ASP-based
method, and the effect of granularity of goal specification and the integration of stability checks on computational efficiency
in terms of time.

Furthermore, to verify the executability of the plans computed by our method and to show their applicability with real
robots, we perform dynamic simulations and physical implementations of several benchmark scenarios.

4 A relatively recent solution [75,77] to this 150 year old puzzle, honored with the prestigious David P. Robbins Prize in mathematics, has introduced the
use of blocks as counterbalance to improve upon the well-established solution.
3

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
1.3. Organization of the manuscript

The rest of the paper is organized as follows. Section 2 defines the robot construction problem, Section 3 provides
illustrative examples, while Section 4 presents the formal representation of the problem in Answer Set Programming and
provides the soundness and completeness results. Section 5 details integration of stability checks for hybrid planning and
presents examples demonstrating the importance of such integration for hybrid planning of construction problems. Section 6
discusses the results of experimental evaluations to investigate the computational performance of our hybrid ASP-based
method, as the input size and the granularity of goal specification change, and when the integration of stability checks
is disabled. Section 7 discusses several challenging benchmark problems and demonstrates applicability of the proposed
approach through executions with a bimanual robot. Section 8 presents a comprehensive review of related works. Section 9
concludes the study and presents future research directions. Detailed proofs are presented in Appendix A, while challenging
benchmarks problems and their solutions are given in Appendix B.

2. Robot construction problems

A robot construction problem comprises

• a final stable configuration of different types of prefabricated blocks stacked on each other on the ground, that satisfies
some goal conditions, and

• a feasible stack rearrangement plan to obtain that final configuration from a specified initial configuration of the blocks.

Figs. 5, 6 and 19 present such stable final configurations, together with feasible construction plans to achieve them.
Initially, regular shaped blocks are stacked on the ground/table as specified by the problem instance. The ground consists

of a set of flat surfaces (disconnected surfaces are required for bridges) and each surface has limited space for construction.
We use unit spaces, within a discrete model of the problem, to identify how much space is available on a block/surface

and where to locate a block. A single unit space is set to be equal to the size of the smallest block. To describe our
approach, we consider three types of prefabricated blocks in the form of regular-shaped blocks: small blocks with one unit
space, medium blocks with three unit spaces, and large blocks with five unit spaces. We assume that the blocks are placed
in the same row, i.e., other orientations are not considered. We also assume that the width and the height of all the blocks
are the same, while their weights and mass distributions may vary based on the problem instance. These assumptions allow
us to model discrete/logical task planning in two-dimensional space, while continuous/probabilistic feasibility checks are
conducted in three-dimensional space where each block is considered as a three-dimensional object with a predefined mass
distribution.

We consider construction tasks performed by multiple autonomous robots, such as bimanual manipulators. The robots
can pick and place blocks. We assume that the orientations of the blocks remain the same during the plan, so that the
robots do not have to rotate the blocks.

Our approach does not rely on any assumptions about the weight distribution of the blocks. For clarity of presentation
and without loss of generality, we only focus on the stability of the structures as the feasibility check performed in the
continuous domain. In particular, we ensure the stability of each step of the plan by testing it with a physics engine. Other
feasibility checks, such as motion planning queries, reachability and graspability checks for manipulation actions, can be
similarly integrated to our hybrid reasoning framework [31,81,71,79], as illustrated with an example in Section 4.1.

The goal conditions can be described in an abstract manner to capture important aspects of specific structures. For
instance,

- for a simple stack, height can be maximized,
- for a bridge, the ground on one side should be connected to the one on the other side,
- for an overhang, constraints can be provided about the desired length of the overhang.

If necessary, further goal conditions may be specified in an abstract manner (e.g., lightweight blocks should be placed on
top of heavy ones), with more details (e.g., blocks 3 and 4 must be placed on block 5), or even with further details (e.g.,
block 1 must be placed on block 2, ensuring that unit space 1 of block 1 is on unit space 3 of block 2).

In general, there exist multiple final configurations that satisfy the goal conditions, but only the ones that are stable and
that can be achieved with a feasible construction plan are of interest. In that sense, the robot construction problem not
only aims for a plan that reaches a goal configuration, but also ensures that this configuration and all intermediate steps
are stable. Under these assumptions, we model the robot construction problems as a hybrid planning problem.

Construction problems are challenging from the perspective of planning, since they involve incorporation of preexisting
structure into the final design, pre-assembly of movable substructures, and use of extra blocks as temporary supports or
counterweights during construction. These problems are challenging from the perspective of geometric reasoning as well,
since they these involve stability checks of complex structures.
4

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 2. Stable construction of asymmetric bridges: Given an initial state (left figure), a stable bridge is constructed (right figure).

Note that construction problems inherit the intractability of elementary Blocks World (EBW) problems, as the latter is a
specific type of construction problems. Thanks to Gupta and Nau [46], we know that, given an EBW problem and a positive
integer L, it is NP-complete to decide the existence of a plan whose makespan is less than or equal to L [46, Theorem B.5].

Consider a variation of EBW (called VLBW) where the table can hold on a limited number of blocks, the blocks are of
different sizes, and a large block cannot be placed on a smaller block. Given a VLBW problem, it is possible that the shortest
plan has exponential length [46, Theorem E.1]. In that sense, if we consider a stability checker that returns “unstable” when
a large block is placed on a smaller block, then it is possible that a construction problem (like Tower of Hanoi) has an
exponential length shortest plan.

3. Illustrative examples

Consider the robot construction problems shown in Fig. 2 specified by their initial states; in each problem, the goal is to
build a stable bridge. The construction area is limited, and an upper bound is given on the length of a plan. The problem
shown in Fig. 2(b) further requires construction to start from the left side and proceed towards the right side. Solutions to
these bridge construction problems require

• finding stable goal configurations of prefabricated blocks so that they connect the two sides (e.g., as in the final states
shown in Fig. 2),

• handling ramifications of actions (e.g., when C4 is placed on S7, it becomes on S5 as an indirect effect as in Fig. 2(b)),
• construction and incorporation of subassemblies (e.g., the subassembly of S4, S3, M3 in the final state shown in

Fig. 2(a)),
• using blocks or subassemblies as counterweights (e.g., all the small blocks and C4 in the final state in Fig. 2(b)), and
• maintaining stability of the structure at all times.

Construction of overhangs (Figs. 3 and 19), symmetric bridges (Fig. 4), and other interesting structures (Figs. 5 and 6)
demonstrate further challenges, such as

• the need for concurrency of actions (e.g., moving S1 and S2 onto L1 at the same time as in Fig. 6(b)).

4. Modeling robot construction problems

We use Answer Set Programming (ASP) [9]—a form of knowledge representation and reasoning paradigm in AI—for
hybrid planning. The idea is to represent the hybrid action domain by a set of logical formulas (called “rules”), whose
models (called “answer sets” [41]) correspond to plans and can be computed by special implemented systems called answer
set solvers, like dlvhex [25], making calls to relevant feasibility checkers as needed.
5

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 3. Stable construction of overhangs: Given an initial state (left figure), a stable overhang of a given size is constructed (right figure).

Fig. 4. Stable construction of symmetric bridges: Given an initial state (left figure), a stable bridge is constructed (right figure).

4.1. Formulas in ASP

We consider disjunctive ASP rules of the form:

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm

where m, k ≥ 0, each αi is a literal, and each βi is a literal or an external literal. Here, α1 ∨ · · · ∨ αk is called the head,
β1, . . . , βn, not βn+1, . . . , not βm is called the body of a rule. Intuitively, a rule expresses that if all βi (1 ≤ i ≤ n) holds but
no βi (n + 1 ≤ i ≤ m) holds then some αi (1 ≤ i ≤ k) holds as well. When k = 0, the rule is a constraint; when n = m = 0, it
is a fact.
6

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 5. Plans for two challenging robot construction scenarios that includes a) manipulation of subassemblies and b) use of counterweights. In these
examples, the initial states are specified completely in detail (e.g., block S1 is on the unit space 3 of block L1), while the goal states are specified partially
in an abstract way (e.g., blocks S1 and S3 are on block L1).

For instance, the following rule expresses that pick actions may occur at any time in a plan:

pick(a,b, t) ∨ ¬pick(a,b, t) ←
where a denotes a gripper of a robot, b denotes a block to be picked up, and t is a time step. Note that pick(a, b, t) ∨
¬pick(a, b, t) is not a tautology as in classical logic, but expresses a choice of occurrence for an action. This is due to the
nonmonotonic semantics of ASP formulas.

An external atom &g[Y1, . . . , Yn](X1, . . . , Xm) is defined by its name g , input Y1, . . . , Yn and output X1, . . . , Xm . Intu-
itively, g takes the input Y1, . . . , Yn , passes it to an external computation (like a stability checker), and conveys the results
X1, . . . , Xm into the rules in the spirit of semantic attachments in theorem proving [100]. Different from the semantic at-
tachments in planning [21,53], the arguments Y1, . . . , Yn passed to external computation do not need to be object constants
or variables; they can be predicate extensions.

For instance, the following rule prevents the occurrence of a pick action in a plan, if the block that the robot wants to
pick is not reachable:

← pick(a,b, t),not &reachable[on,a,b]().
Here the external computation reachable takes as arguments the arm a, the block b, and the extension of the predicate on,
which describes the location of every block in the environment. Given this information, reachable applies a motion planning
7

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 6. Plans for two challenging robot construction scenarios that includes a) use of scaffolds and b) true concurrency of actions. In these examples, the
initial states are specified completely in detail (e.g., block S1 is on the unit space 1 of the table), while the goal states are specified partially in an abstract
way (e.g., blocks S1 and S3 are on block L1).

algorithm to check whether the arm a can reach the block b without colliding with any other objects in the environment.
External atoms allow us to embed feasibility checks into task planning [31]. dlvhex evaluates external atoms as needed [23].

ASP offers some useful constructs to concisely represent knowledge. For instance, aggregate atoms are expressions of the
form [34]:

s1 ≺1 α{t1, ..., tn : β1, ..., βm} ≺2 s2.

Here ti are terms, βi are literals, α is a function that evaluates the numerical value of the aggregate, and ≺1 and ≺2 are
predicates that compare the resulting value with the terms s1 and s2. An aggregate atom holds if the comparison is true
with respect to evaluating α on the tuples 〈t1, ..., tn〉 for which β1, ..., βm hold. For instance, the aggregate atom
8

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Occurrences/nonoccurrences: Pick actions may occur at any time.

pick(a,b, t) ∨ ¬pick(a,b, t) ←
Direct effects: After a robot arm a picks a block b, the robot arm is holding that block.

holding(a,b, t + 1) ← pick(a,b, t)

Preconditions: A robot arm a cannot pick a block b if it is holding it or another block, or if another robot arm is holding
it.

← pick(a,b, t),holding(a,b′, t)
← pick(a,b, t),holding(a′,b, t) (a �= a′)

Fig. 7. ASP formalization � of construction problems: Occurrences/nonoccurrences, direct effects and preconditions of pick actions.

#count{b : box(b),holding(a,b, t)} = 0

describes that the number of boxes b that a robot is holding with its arm a at time step t is 0.
Weak constraints are expressions of the following form [10]:

∼←Body(t1, ..., tn)[w@p, t1, ..., tn].
Here, Body(t1, ..., tn) is a formula (as in the body of a rule) with the terms t1, ..., tn . Intuitively, whenever an answer set
for a program satisfies Body(t1, ..., tn), the tuple 〈t1, ..., tn〉 contributes a cost of w to the total cost function relative to
its priority p. The ASP solver tries to find an answer set with the minimum total cost. For instance, the following weak
constraint

�←− blockHeight(b,h, T). [h@1,b]
instructs dlvhex to compute an answer set where the total height of every block b in a tower at the end of the plan, at
time step T , is minimized.

4.2. Fluents and actions

The objects in a robot construction domain consist of a set A of robotic grippers, a set B of blocks, and a set L of
locations (B ⊆ L). The positions on each location l ∈ L (and thus each block b ∈ B) are represented by its unit spaces
1, 2, ..., nl for some positive integer nl that denotes the length of that location. Moreover, nonnegative integers 0, 1, ..., T − 1
describe time steps for a task plan, where T specifies the maximum makespan (i.e., the length) of a plan.

In the following, the schematic variable t ranges between 0 and T , a and a′ range over all grippers, b and b′ range over
all blocks, l and l′ range over all locations (e.g., blocks and Table), and u, u′ , v and v ′ range over relevant unit spaces.

We consider two fluents to describe the states of the world:

- holding(a, b, t) (robot’s gripper a is holding block b at step t of the plan), and
- on(b, v, l, u, t) (box b is at location l at time step t , in such a way that the unit space v of b is on the unit space u on l).

We consider two actions:

- pick(a, b, t) (pick the block b with the gripper a at step t) and
- place(a, l, t) (place the block being held by the gripper a, on the location l at step t) with the attribute placeOn(a, b, v, l,

u, t) (place the block b being held by the gripper a such that the unit space v of b is on the unit space u of l).

Here, the variable t ranges between 0 and T −1.
Using these fluent and action constants, the preconditions and direct effects of pick and place actions, and the com-

monsense law of inertia can be formalized in ASP (shown in Figs. 7–9) following the guidelines described by Erdem et
al. [30,26]. This formulation considers pick and place actions from a surface, and takes into account the following desired
conditions about the nonexecutability of pick and place actions:

• A robot arm cannot pick a block if it is already holding it or another block.
• A robot arm cannot pick a block if another robot arm is holding it.
• A robot arm cannot place a block (onto any location) if it is not holding any blocks.
• A robot arm cannot place (any block) onto a block that is being held by another robot arm.
9

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Occurrences/nonoccurrences: Place actions may occur at any time.

placeOn(a,b, v, l, u, t) ∨ ¬placeOn(a,b, v, l, u, t) ←
place(a, l, t) ← placeOn(a,b, v, l, u, t)

Direct effects: After a robot places unit v of a block b that it is holding, onto unit u of a location l, the unit v of block
b becomes on the unit u of location l.

on(b, v, l, u, t + 1) ← placeOn(a,b, v, l, u, t),holding(a,b, t)

Preconditions: A robot cannot place onto location l if it is not holding any blocks.

← place(a, l, t),#count{b : box(b),holding(a,b, t)} = 0

A robot arm a cannot place onto a block b if another robot arm is holding b.

← place(a,b, t),holding(a′,b, t) (a �= a′)

Fig. 8. ASP formalization � of construction problems: Occurrences/nonoccurrences, direct effects and preconditions of place actions.

If a block b is (resp. not) at a location l at time step t then b remains to be (resp. not) at l at the next step t + 1 by
default (i.e., unless some action changes its location directly/indirectly).

on(b, v, l, u, t + 1) ← not ¬on(b, v, l, u, t + 1),on(b, v, l, u, t)
¬on(b, v, l, u, t + 1) ← not on(b, v, l, u, t + 1),¬on(b, v, l, u, t)

If a block is (resp. not) being held then it remains to be (resp. not) held at the next state by default.

holding(a,b, t + 1) ← not ¬holding(a,b, t + 1),holding(a,b, t)
¬holding(a,b, t + 1) ← not holding(a,b, t + 1),¬holding(a,b, t)

Fig. 9. ASP formalization � of construction problems: Commonsense law of inertia.

If a block is on some location then the block is not being held by a robot, and vice versa.

onAux(b, l, t) ← on(b, v, l, u, t)
¬holding(a,b, t) ← onAux(b, l, t)
¬on(b, v, l, u, t) ← holding(a,b, t)

Further uniqueness conditions on locations of blocks:

¬on(b, v, l′, u′, t) ← on(b, v, l, u, t) (〈l, u〉 �= 〈l′, u′〉)
¬holding(a,b′, t) ← holding(a,b, t) (b �= b′)
¬holding(a′,b, t) ← holding(a,b, t) (a �= a′)

Fig. 10. ASP formalization � of construction problems: Straightforward negative ramifications of pick and place actions.

In the following, let us discuss how the further challenges of robot construction problems are addressed using ASP.

4.3. Ramifications

The pick and place actions of a robot have many interesting indirect effects (or ramifications), as also considered in the
Blocks World domain. Some of these ramifications are quite straightforward, as shown in Fig. 10. For instance, if a block b
is placed on some location l, then, as a direct effect of this action, b becomes on l; as an indirect effect, the robot’s gripper
becomes empty:

¬holding(a,b, t) ← onAux(b, l, t).
10

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Positive ramifications (Fig. 13):

on(b, v + i, l, u + i, t) ← on(b, v, l, u, t)
(1 ≤ i ≤ min{size(b)−v, size(l)−u})

on(b, v − j, l, u − j, t) ← on(b, v, l, u, t) (1 ≤ i ≤ min{v, u})
Positive ramifications (Fig. 14):

on(b, v,b′, u, t) ← globalPos(b, v,h, x, t),globalPos(b′, u,h−1, x, t) (h > 0)

Negative ramifications (Fig. 15):

¬on(b, v + i, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v + i,h, xi, t),
empty(h−1, xi, t) (size(b)−v > size(l)−u, size(l)−u < i ≤ size(b))

¬on(b, v − j, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v − j,h, x j, t),
empty(h−1, x j, t) (min{size(b)−v, size(l)−u} ≤ j < v)

Fig. 11. ASP formalization � of construction problems: Ramifications of placing a long block on another block, as illustrated in Figs. 13–15.

Global positions of locations, defined vertically:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t) (1 ≤ x ≤ nT able)

globalPos(b, v,h, x, t) ← globalPos(b′, u,h−1, x, t),on(b, v,b′, u, t) (h > 1)

Global positions of locations, defined horizontally:

globalPos(b, v+1,h, x+1, t) ← globalPos(b, v,h, x, t) (v<size(b))

globalPos(b, v−1,h, x−1, t) ← globalPos(b, v,h, x, t) (v>1, x>1)

Empty spaces above the table:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0)

Fig. 12. ASP formalization � of construction problems: Auxiliary definitions for global positions and empty spaces.

Here, onAux is a projection of on. Furthermore, if the unit space v of block b is on the unit space u of location l, then (b, v)

is not on any other unit (l′, u′).

¬on(b, v, l′, u′, t) ← on(b, v, l, u, t)

where the variable u and u′ range over the unit spaces of l, and l �= l′ or u �= u′ .
If a robot’s gripper a picks a block b, then as its direct effect a is holding b; as an indirect effect, b is not on any block

or the table:

¬on(b, v, l, u, t) ← holding(a,b, t).

Furthermore, as indirect effects, the gripper a is not holding any other blocks b′ (b �= b′):

¬holding(a,b′, t) ← holding(a,b, t)

and no other gripper a′ is holding b (a �= a′):

¬holding(a′,b, t) ← holding(a,b, t)

There are further ramifications of pick and place actions, pertaining to the robot construction problems that are not
considered in the Blocks World.

An interesting positive ramification occurs (Fig. 13) when a unit space v of a large block b is placed on a unit u of
another block l: the block b occupies as many unit spaces as its size allows on l. In particular, block b occupies the right
part of l, starting from the unit space u of l:

on(b, v + i, l, u + i, t) ← on(b, v, l, u, t) (1)
11

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 13. As indirect effects of placing unit v of b on unit u of l, unit v + i (resp. v − j) of b is on unit u + i (resp. u − j) of l.

Fig. 14. As indirect effects of placing b on l, unit v of b becomes on unit u of b′ , and unit v + i (resp. v − j) of b becomes on unit u + i (resp. u − j) of b′ .

Fig. 15. As indirect effects of placing unit v of b on unit u of l, unit v + i (resp. v − j) of b is on unit u + i (resp. u − j) of l.

where i ranges between 1 and min{size(b) − v, size(l) − u}, and size(block) denotes the length of block. Similarly, block b
occupies the left part of l starting from the unit space v of l:

on(b, v − j, l, u − j, t) ← on(b, v, l, u, t) (2)

where j ranges between 1 and min{v, u}.
Another interesting positive ramification occurs when a large block b is placed on top of block l (Fig. 14): block b is also

placed on another block b′ that is not too far from block l.
Such a sophisticated ramification is represented as follows. Suppose that atoms of the form globalPos(b, v, h, x, t) express

that the unit space v of block b at time step t is globally located at (h, x) (i.e., x units to the right of the leftmost side of
the table, and h units above the surface of the table). After placing block b on block l, if the unit space v of b and the unit
space u of b′ are both globally located horizontally x units from the leftmost side of the table, and b and b′ are globally
located vertically h and h′ units above the table, respectively, then as a ramification the unit v of b is on the unit u of b′ .
This ramification is described by the following rule:

on(b, v,b′, u, t) ← globalPos(b, v,h, x, t),globalPos(b′, u,h−1, x, t) (h > 0)

An interesting negative ramification occurs (Fig. 15) when a large block b is placed on another block, and some parts of
b are not on any location as they happen to be over an empty space.

Such a sophisticated ramification is represented as follows. Suppose that atoms of the form empty(h, x, t) express that
the unit space globally located at (h, x) is empty (i.e., not occupied by any block) at time step t .

After placing unit space v of a block b on unit space u of another block l, if the unit space v + i of b is globally located
at (h, xi) and the global position (h − 1, xi) is empty, then as a ramification the unit v + i of b is not on any location. This
negative ramification is described by the following rule:

¬on(b, v + i, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v + i,h, xi, t),
empty(h − 1, xi, t)

(3)

where size(b)−v > size(l)−u, i ranges between size(l)−u+1 and size(b), and h>1.
12

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Similarly, a negative ramification occurs if the unit space v − j of b is globally located at (h, x j) and the global position
(h − 1, x j) is empty, and is described by the following rule:

¬on(b, v − j, l′, u′, t) ← on(b, v, l, u, t),globalPos(b, v − j,h, x j, t),
empty(h − 1, x j, t)

(4)

where j ranges between min{size(b)−v, size(l)−u} and v−1, and h>1.
We define global locations of blocks recursively. For every time step t and for every block b (within a tower) that is

located x units to the right of the leftmost side of the table, first we recursively define the height h of every unit v of
block b:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t) (1 ≤ x ≤ nT able)

globalPos(b, v,h, x, t) ← globalPos(b′, u,h−1, x, t),on(b, v,b′, u, t) (h>1).
(5)

Next, we recursively define the locations of other units of block b horizontally to the right and to the left of that tower:

globalPos(b, v+1,h, x+1, t) ← globalPos(b, v,h, x, t) (v<size(b))

globalPos(b, v−1,h, x−1, t) ← globalPos(b, v,h, x, t) (v>1)
(6)

Note that the recursive definition of globalPos characterizes a form of reachability where immediate-connectedness be-
tween a block unit 〈b, v〉 and a block/table unit 〈b′, v ′〉 is understood as one of the following conditions:

(i) 〈b, v〉 is located immediately on 〈b′, v ′〉 (specified by atoms of the form on(b, v, b′, v ′, t)),
(ii) b = b′ and v ′ = v + 1, or

(iii) b = b′ and v ′ = v − 1.

The last two conditions describe horizontal immediate-connectedness of unit spaces of a block.
At every time step t , for every table unit 〈Table, x〉, the rules (5) ∪ (6) identify the block units 〈b, v〉 reachable from

〈Table, x〉 at time t relative to such immediate-connectedness relation, and furthermore define their global locations recur-
sively with respect to their height h from the table and the distance x from the leftmost side of the table.

Proposition 1. Let �′ be the disjunctive program shown in Figs. 7–11. Then, for every time step t and for every block b supported by
the table, rules (5) ∪ (6), when added to �′ , correctly describe the global position of b at time t with respect to its height h from the
table and the distance x from the leftmost side of the table.

The proof of Proposition 1 follows from the observation that the disjunctive program �′ can be equivalently transformed
into a nondisjunctive program (Theorem 1 of [28]), �′ does not contain atoms of the form globalPos(b, v, h, x, t) in the
heads of its rules, and the correctness of the recursive reachability definition (see Lemma 2), as explained in Appendix A.

After defining the global positions, the empty spaces above the table are defined as the global positions (h, x) that are
not occupied by any blocks:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0). (7)

Proposition 2. Let �′ be the disjunctive program shown in Figs. 7–12, except for rules (7). Then, for every time step t and for every
block b supported by the table, rules (7), when added to �′, correctly describe the global positions (h, x) of empty spaces at time t.

The proof of Proposition 2 follows from the observation that the disjunctive program �′ can be equivalently transformed
into a nondisjunctive program (Theorem 1 of [28]), and does not contain atoms of the form empty(h, x, t) in the heads of
its rules, as explained in Appendix A.

Remark. In our experiments, we assume that there is no block overhanging from the leftmost side of the table as the ASP
solver dlvhex does not allow negative integers. To ensure this assumption, we add further constraints as shown below.

← on(b, v,Table, x, t) (v > x)
← on(b, v,b′, u, t),globalPos(b′, u,h, x, t) (h > 0, v > x)

4.4. Supportedness constraints

Supportedness of blocks At every state of the world (including the initial state and goal state), it is desired that

D1 No block is supported by itself (i.e., no circular configurations).
13

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
The formulation of this constraint is challenging because it requires the transitive closure of a binary relation onAux that
describes which block is on which location.

Recall that onAux is obtained from on by projection, as part of � (Fig. 10):

onAux(b, l, t) ← on(b, v, l, u, t).

For every step t , we recursively define the supportedness of a block b by a location l as follows:

supported(b, l, t) ← onAux(b, l, t)
supported(b, l, t) ← onAux(b, l′, t), supported(l′, l, t) (b �=l′). (8)

After that, we add a constraint to ensure that no block b is supported by itself:

← supported(b,b, t). (9)

Proposition 3. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (8), when added to �, correctly describe the sup-
portedness of blocks by other blocks and by the table. Furthermore, adding constraints (9) to � ∪ (8) guarantees the desired feature D1
(i.e., no circular configuration of blocks occurs in construction at any time step 0, 1, ..., T − 1).

The proof follows from (i) Theorem 1 of [28] about an equivalent representation of disjunctive rules about occur-
rences/nonoccurrences of actions by nondisjunctive rules, (ii) the observation that � does not contain atoms of the form
supported(b, l, t) in the heads of its rules, and (iii) Propositions 4 and 5 of [29] about the correctness and well-foundedness
of the transitive closure of a relation defined recursively in ASP. The proof is presented in Appendix A.

Supportedness of subassemblies Note that in the Blocks World domain, every block is supported by the table unless it is
being held by a robot. In robot construction problems, since we would like to allow robots to pick and place subassemblies,
we cannot simply enforce this constraint. Instead, we can enforce that

D2 Every block b is supported by either the table or a block being held by a robot unless the block b itself is being held
by the robot.

For that, for every time step t , we define an auxiliary concept to identify blocks 1) being supported by the table, 2) being
supported by a block being held by a robot, or 3) being held by a robot:

supportedAux(b,1, t) ← supported(b,Table, t),
#count{a : arm(a),holding(a,b, t)} = 0

supportedAux(b,2, t) ← supported(b,b′, t),holding(a,b′, t) (b �= b′)
supportedAux(b,3, t) ← holding(a,b, t)

(10)

and add the following constraint to ensure that exactly one of these three cases should hold for each block b (i.e., no flying
blocks, no blocks supported by both the table and a robot):

← #count{x : supportedAux(b, x, t)} < 1
← #count{x : supportedAux(b, x, t)} > 1

(11)

Proposition 4. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (10), when added to � ∪ (8) ∪ (9), correctly describe
the supportedness of blocks and subassemblies by other blocks, by the table, or by a robot. Furthermore, adding constraints (11) to
� ∪ (8) ∪ (9) ∪ (10) guarantees the desired feature D2 (i.e., no flying blocks, and no blocks supported by both the table and a robot at
any time step 0, 1, ..., T − 1).

The proof follows from (i) the observation that � ∪ (8) ∪ (9) does not contain atoms of the form supportedAux(b, x, t) in
the heads of its rules, and (ii) from Proposition 3 and 2 of [33] about the conservative extensions of models by adding a
definition, and elimination of models by adding constraints, respectively. The proof is presented in Appendix A.

4.5. Constraints about occurrences of action

Constraints for manipulating subassemblies in hand Regarding manipulation of subassemblies in robot construction problems,
it may be desired that

D3 No robot picks/places subassemblies from/to some other subassemblies being held by a robot.

This is guaranteed by the following constraints:

← pick(a,b, t),not supported(b,Table, t)
← place(a,b, t),not supported(b,Table, t)

(12)
14

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Supportedness of a block by another block or the table:

supported(b, l, t) ← onAux(b, l, t)
supported(b, l, t) ← onAux(b, l′, t), supported(l′, l, t) (b �=l′).

No circular configurations of blocks:

← supported(b,b, t).

Supportedness of a block (or a subassembly) 1) by the table, 2) by another block being held by a robot, or 3) by a
robot:

supportedAux(b,1, t) ← supported(b,Table, t),
#count{a : arm(a),holding(a,b, t)} = 0

supportedAux(b,2, t) ← supported(b,b′, t),holding(a,b′, t) (b �= b′)
supportedAux(b,3, t) ← holding(a,b, t)

No flying blocks:

← #count{x : supportedAux(b, x, t)} < 1

No block supported by the table and a robot:

← #count{x : supportedAux(b, x, t)} > 1

Fig. 16. Supportedness of blocks and subassemblies.

Noconcurrency constraints Unless specified otherwise, the ASP modeling of the construction problem allows true concur-
rency. We can explicitly specify noconcurrency constraints, based on the capabilities of manipulators or desired conditions
of the construction process. For instance, it may be desired that

D4 No robot picks a block using both of its grippers.

This is guaranteed by the following constraint:

← #count{a : arm(a),pick(a,b, t)} > 1. (13)

For instance, it may be desired that

D5 A block b cannot be picked by a gripper a while another gripper a′ (a �= a′) is placing a block on b.

This is guaranteed by the following constraint:

← pick(a,b, t),place(a′,b, t). (14)

The following proposition ensures that the constraints above guarantee the desired properties D3–D5, while preserving
the correctness of the ASP program for robot construction problems discussed in the previous sections.

Proposition 5. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown in
Fig. 16 about the supportedness of blocks/subassemblies. Then, adding constraints (12) ∪ (13) ∪ (14) to �′ further ensures the desired
features D3–D5 about occurrences of actions.

Propositions 3 and 4 ensure constructions that satisfy supportedness constraints. Then the proof follows from application
of Proposition 2 of [33] about the elimination of models by adding constraints (12) ∪ (13) ∪ (14). The proof is explained in
Appendix A.

Other constraints Depending on the capabilities of the robotic manipulator and the difficulties of execution of concurrent
actions, we can include further constraints about the occurrences of actions.

For instance, if the robotic manipulator can place a block to a location l from the above only (so it cannot place a block
to an empty space under another block), then we can add the following constraint to our program above:

← placeLU(l, u, t),not clearAbove(l, u, t)

where placeLU is a projection of placeOn and clearAbove describes that there is no part of any block above a unit space:
15

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
placeLU(l, u, t) ← placeOn(a,b, v, l, u, t)
clearAbove(l, u, t) ← #count{b : globalPos(b, v,h′, x, t),h′ > h} = 0,

globalPos(l, u,h, x, t).

In another case, considering the difficulty of synchronization of actions, it may be desired that a robotic manipulator
does not replace a block with another block at the same time. This is guaranteed by adding the following constraint:

← pick(a,b, t),on(b, v, l, u, t),placeLU(l, u, t).

Considering the stability of the structure, it may be desired that two blocks cannot be picked at the same time if there
exists another block that is supported by both of them. This is guaranteed by adding the following constraint:

← pick(a,b, t),pick(a′,b′, t), commonSupported(b,b′, t) (b �= b′)

where commonSupported is defined as follows:

commonSupported(b1,b2, t) ← supported(b,b1, t), supported(b,b2, t) (b1 �= b2).

Similarly, it may be desired that two blocks cannot be placed at the same time if they will support another block together
afterwards. This is guaranteed by adding the following constraint:

← placeB(a,b, t),placeB(a′,b′, t),
not commonSupported(b,b′, t), commonSupported(b,b′, t + 1)

where placeB is a projection of placeOn:

placeB(a,b, t) ← placeOn(a,b, v, l, u, t).

Remark. In our experiments, we take into account these constraints about occurrences of actions.

4.6. Stability constraints

Stability checks are desired to ensure the stability of the overall assembly and each subassembly at every state of the
construction plan. These checks can be performed externally by a module utilizing state-of-the-art physics engines, and
their results can be embedded in the ASP formulation using external atoms. This modular approach enables our framework
to be independent from any particular implementation of the stability checking algorithm, thus the stability checker can be
treated as a black-box. Note that same approach is commonly employed for collision-checking during motion planning [61].

Let � be a stability checking algorithm that returns True if the given structure is stable, and False otherwise.
We consider two external atoms to embed stability checks into our ASP formulation:

• &stable[on, t]() gets as input the relative positions of all the blocks supported by the table at step t (described by the
on predicate); and

• &hStable[holding, on, t]() gets as input the relative positions of all the blocks being carried by a manipulator at step t
(described by holding and on predicates).

Both external atoms utilize the stability checker �, and return the outputs (i.e., True for stable or False for unstable) accord-
ingly.

We embed the outcomes of stability checks into our domain description by constraints as follows:

← not &stable[on, t]()
← holding(a,b, t),onAux(b′,b, t),not &hStable[holding,on, t](). (15)

Note that the external atom &stable[on, t]() gets as input the extension of on predicate at step t , that describes the relative
positions of the blocks; it returns False if the structure is not stable. The external atom &hStable[holding, on, t]() works in
the similar fashion but for assemblies that are being carried by a robot.

The following proposition ensures that the constraints (15) guarantee the stability of the assembly being constructed by
a robot.

Proposition 6. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, and by adding the program shown
in Fig. 16 about supportedness of blocks/subassemblies. Suppose that the stability checking algorithm � is correct (i.e., the construction
is stable iff � returns True). Then adding rules (15) to �′ ensures that, at every time step t, every configuration of blocks assembled on
a flat surface (e.g., table) or being carried by a gripper is stable.
16

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 17. Connectedness of blocks in a construction, illustrated as a graph. a) A bridge consisting of 5 blocks, b) connectedness graph where nodes represent
blocks and edges represent connectedness.

Propositions 3 and 4 ensure constructions that satisfy supportedness constraints and thus prevent spurious structures,
like flying blocks/subassemblies, circular configurations of blocks, or blocks being supported by both the table and a robot.
Then the proof of Proposition 6 follows from an application of Proposition 2 of [33] about the elimination of spurious
models by adding constraints. The proof is presented in Appendix A.

4.7. Bridges and overhangs

In bridge construction scenarios, instead of one whole surface, there are two surfaces apart from each other: e.g., one on
the left side and the other on the right side. One of the required conditions for a bridge is that, it connects these two sides:

D6 At the end of the construction, there exists a block x supported by the left side of the bridge and another block y
supported by the right hand side of the bridge such that x and y are connected to each other.

First we define immediate-connectedness as symmetric-supportedness:

symSupported(x, y, t) ← supported(x, y, t)
symSupported(x, y, t) ← supported(y, x, t)

(16)

Then we recursively define connectedness of blocks as the transitive closure of immediate-connectedness (as illustrated
by Fig. 17 by a graph), using an auxiliary atom of the form connected(x, y, t):

connected(x, y, t) ← symSupported(x, y, t)
connected(x, y, t) ← symSupported(x, z, t), connected(z, y, t)

(17)

and add a constraint to ensure the required condition D6 for the last time step T :

← #count{x, y : connected(x, y, T),

side(x, Left, T), side(y,Right, T)} = 0.
(18)

Here, side(x, Left, T) expresses that there exists a block x supported by the left side of the bridge at time step T .

Proposition 7. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′ be the
program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown in Fig. 16 about supportedness
of blocks/subassemblies, and by adding the constraints (15) about stability of the construction. Then, adding rules (16) ∪ (17) ∪ (18) to
�′ ensures a stable symmetric bridge (i.e., a construction that satisfies the condition D6) at time step T .

Propositions 3–6 ensure constructions that satisfy supportedness and stability constraints. Then the proof follows from
Proposition 3 and 2 of [33] about the conservative extensions of models by adding a definition, and elimination of models
by adding constraints, respectively.

Uneven bridges In order to solve scenarios involving uneven bridges as shown in Fig. 18, the heights of both sides (Left and
Right) should be specified in the base cases of the recursive definition of the global position of a unit space of a block.

Note that, in the program shown in Fig. 12, since all blocks are assumed to be on the same surface (i.e., Table), the base
case of the recursive definition (5) is expressed by the following rule:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t) (1 ≤ x ≤ nT able).

Now we have two surfaces, Left and Right sides, we need to consider their heights and how far the Right side is from
the Left side. Suppose that the height of the left side of the bridge is H , the height of the right side is H ′ , and the leftmost
17

Fig. 18. The height difference between the left and right side is 4 units.

side of the right side is L′ units from the leftmost side of the left side. Then, instead of the rule above, we define the base
cases by the following rules:

globalPos(b, v, H + 1, x, t) ← on(b, v, Left, x, t) (1 ≤ x ≤ nLef t)

globalPos(b, v, H ′ + 1, x + L′ − 1, t) ← on(b, v,Right, x, t) (1 ≤ x ≤ nRight).

We also need to update the definition of empty spaces, to include parts of the sides and what is between the sides.
Instead of the following rule:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0)

we can include the following rules:

partOfSide(h′, x) ← globalPos(s, v,h, x,0) (h > 0,0 ≤ h′ < h, s = Left,Right)
emptyOther(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0,

not partOfSide(h, x) (0 ≤ h)

empty(h, x, t) ← partOfSide(h, x)
empty(h, x, t) ← emptyOther(h, x, t).

Overhangs In overhang scenarios (Fig. 19), one of the required conditions about a final structure is that

• there exists a block b supported by Table such that unit v of b is globally located at x units from the leftmost side of
the table, and

• the difference between the maximum overhang z and the size of Table is equal to x.

← #count{b : supported(b,Table, T),globalPos(b, v, _, x, T),

x = z − size(Table),overhang(z)} = 0.

4.8. Maximizing/minimizing the heights of stacks

In block stacking scenarios, the goal may involve maximizing/minimizing the heights of stacks. A stack can be a tower or
a tightly packed structure with or without holes, supported by a base (e.g., a block, blocks, table or sides of a bridge). For
instance, Fig. 20 presents a stack with a height of 8 units.

Maximizing the height To maximize the height of a specified block B in a stack, first we define a penalty for each block b
at the end of the plan, at time step T , inversely proportional to its height h in a stack (e.g., C − h where C is the maximum
height of a structure built by the existing blocks). Then, we add a weak constraint that minimizes the penalty for the
specified block B , at the end of the plan, at time step T .

�←− globalPos(B_,h, _, T), c = C − h. [c@1] (19)

In Fig. 21, the height of the block L2 is maximized. Note that L2 is a large block of 4 units, whereas S1, ..., S4 are small
blocks of size 1. Therefore, L2 cannot be supported by a tower of small blocks. Fortunately, L2 can be supported by two
small blocks, as shown in the figure.

In Fig. 22, the height of block L1 is maximized by making use of the available blocks. It is important to note that, here
the goal is not to connect the two sides.
F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
18

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902

Fig. 19. A sample plan for a stable overhang construction.
19

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 20. Maximizing the height of block S3 in a stack of 8 blocks.

Fig. 21. Maximizing the height of block L2 in a stack of 6 blocks.

Fig. 22. Maximizing the height of block L1 in a stack of 4 blocks when there are two uneven sides with a height difference of 1 unit.

Fig. 23. Minimizing the height of block S3 in a stack of 8 blocks. Here, M1 is the base of the stack.

Minimizing the height Alternatively, the height of a specified block B in a stack can be minimized using a penalty that is
directly proportional to the height of the block.

�←− globalPos(B_,h, _, T). [h@1] (20)

Here, we can ensure that all blocks (including the one whose height is to be minimized) should be part of a stack built
on block L.

← not supported(b, L, T) (b �=L). (21)

In Fig. 23, the height of the block S3 is minimized, in a stack that involves all the blocks supported by the base block
M1 on the table.

4.9. Soundness and completeness

The soundness of the proposed method with respect to the desired properties is provided by Propositions 3–7. The
following proposition shows its completeness.
20

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 24. (a) A final stable configuration. (b) An intermediate configuration of blocks obtained when feasibility checks are not used.

Proposition 8. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′
be the ASP program obtained from � by adding the supportedness and stability constraints (and, in case of bridge construction, also
the connectedness constraints), and the ramification rules as described above. Then every robot construction plan that satisfies these
desired properties and whose makespan is at most T −1 is characterized by an answer set for �′.

The proof follows from the representation methodology of the program: no constraint added to the program eliminates
a valid robot construction plan.

5. Importance of feasibility check and hybrid planning for construction problems

Maintaining the stability of a structure is of prime importance in construction tasks. The structure should be stable
during all the steps of construction. Ensuring stability at all times is challenging from both planning and geometric points
of view.

As discussed in Section 4, in order to perform the continuous domain checks, we utilize external atoms stable and hStable
implemented as Python functions.

In particular, we test stability numerically using the PyBullet physics engine. To ensure robust stability of our assemblies
even under bounded disturbances, we adapt the notion of dynamic stability, in the sense of Fourier’s inequality, which
requires all objects to assume zero acceleration within a local neighborhood of their initial configuration, under the action
of gravitational and friction forces [74]. In addition to gravitational forces, we consider small disturbance forces to the
assembly and check for its configuration after some finite time interval. If the configuration of each object in the assembly
stays within an empirically determined threshold from their initial location, we consider the assembly as dynamically stable.

As an example, consider the construction problem shown in Fig. 24, with two small blocks S1 and S2, a medium block
M1, and a large block L1. All the blocks are initially on the table.

The goal conditions for a final configuration are specified by a set of facts:

goal(S1, L1). goal(S2, L1). goal(M1, S1). goal(M1, S2). goal(L1,Table).

According to this description, the small blocks S1 and S2 are on the long block L1, the block M1 is on S1 and S2, and the
block L1 is on the table.

These goal conditions are ensured at a specified maximum step T by constraints as follows:

← goal(b, l),not onAux(b, l, T).

Note that since onAux atoms are projections of on, the final positions of objects are selected nondeterministically. We include
the constraint above in the following examples where the goal is specified by atoms of the form goal(B, L).

A possible final stable configuration is shown in Fig. 24(a). Such a configuration is achievable by the following hybrid
plan of length 4 (with 6 actions), computed by dlvhex as:

pick(Left, S2,0),pick(Right, S1,0),

placeOn(Right, S1,1, L1,2,1),

placeOn(Left, S2,1, L1,4,2),pick(Right, M1,2),

placeOn(Right, M1,3, S2,1,3).

According to this plan, first the smaller blocks are picked and placed on the long block; afterwards, the medium block is
picked and placed on top of the two small blocks.

Now, let us consider a domain description without any feasibility checks. Then, dlvhex computes the following non-
hybrid task plan of length 4 (with 6 actions):

pick(Right, M1,0),pick(Left, S2,0),

placeOn(Left, S2,1, L1,4,1),

placeOn(Right, M1,3, S2,1,2),pick(Left, S1,2),

placeOn(Left, S1,1, L1,2,3).

According to this non-hybrid plan, first the medium block M2 and the small block S2 are picked, then the small block
is placed on the longer block L1, then the medium block M2 is placed on S2. At this point, an unstable configuration is
obtained, as shown in Fig. 24(b). Therefore, integration of feasibility checks is crucial to ensure generation of stable plans.
21

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 25. (a) A final stable configuration. (b) An intermediate configuration of blocks, obtained when feasibility checks are not used.

Let us present another example. Consider the construction problem in Fig. 25 with six blocks on the table, S1, S2, S3,
M1, M2, and L1, with the following goal conditions:

goal(M2, S1). goal(S2, M1).

goal(L1, S2). goal(L1, M2).

goal(S1,Table). goal(S3,Table). goal(M1,Table).

A possible final stable configuration is shown in Fig. 25. Such a configuration is achievable by the following hybrid plan
of length 4 (with 6 actions), computed by dlvhex:

pick(Left, M2,0),pick(Right, S2,0),

placeOn(Left, M2,3, S3,1,1),placeOn(Right, S2,2, M1,1,1),

pick(Right, L1,2),

placeOn(Right, L1,5, S2,1,3).

Without any feasibility checks, the following plan of length 4 (with 6 actions) is computed:

pick(Right, M2,0)

pick(Left, L1,1),placeOn(Right, M2,3, S1,1,1),

pick(Right, S2,2),placeOn(Left, L1,1, M1,3,2),

placeOn(Right, S2,1, M2,1,3).

This non-hybrid task plan is not feasible since it leads to an unstable intermediate configuration, where the medium block
M2 is placed on the small block S1 at one end, leaving the center of mass outside the small block.

6. Benchmark instances and experimental evaluation

In this section, we introduce a diverse set of challenging robot construction benchmark instances. Precise definitions of
these 21 benchmark instances, and a feasible construction plan computed by our method for each benchmark instance are
provided in Appendix B, not to interfere with the readability of the manuscript.

The benchmark instances address different types of construction problems: Scenarios 1–8 necessitate multiple au-
tonomous robots rearrange stacks of prefabricated blocks to build stable structures by making use of counterweights,
scaffolding, subassemblies, and true concurrency of manipulations. Scenarios 9–11 focus on construction of stable over-
hangs with proper use of counterweights. Scenarios 12 and 13 and Scenarios 14 and 15 emphasize the connectivity of two
sides to build stable symmetric and asymmetric (uneven) bridges, respectively. Finally, Scenarios 16–21 provide examples of
challenging optimization problems while building stable stacks of prefabricated blocks or bridges.

While our main concern in this study is not computational efficiency, we have performed three sets of experiments using
the domain description presented in the paper (without any further optimizations) to investigate the following aspects:

• Experiments 1: The scalability of the proposed hybrid method using the automated reasoner dlvhex and PyBul-
let physics engine on table-top, overhang and bridge instances, in terms of computation time.

• Experiments 2: The effect of specifying goal description in more detail, on the computation time.
• Experiments 3: The effect of integrating stability checks on the computation time.

For all experiments, we have used the ASP solver dlvhex 2.5 with PyBullet 2.4.1 physics engine installed on a Linux
server with 16 2.4 GHz Intel® Xeon® E5-2665 CPU cores and 64 GB memory. For each benchmark scenario, six runs were
performed in parallel with different solver settings (i.e., with configurations handy or jumpy); we report the CPU times of
all six runs and highlight the fastest one in the tables below.

Experiments 1: scalability Table 1 presents the computational times for Scenarios 1–9 with one surface (i.e., the table).
Table 1 indicates that Scenarios 1–9 (with 4–10 blocks of different sizes and weights, where the table size is restricted to
4–15 units of space) can be consistently solved within about 5 minutes. The makespans of plans range between 2 and 9.
From these results, we observe the input size (cf. the product of the number of blocks and the size of the table) has a
significant effect on the computation time: the computation time increases as the input size increases.

While a feasible solution of a 4 unit overhang is presented for Scenario 10 (with 7 blocks and surface space of 7 units)
in Fig. B.36 of Appendix B, the computational time for this instance is not reported in Table 1 since a solution for a 4 unit
22

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Table 1
Computation time for benchmark Scenarios 1–9.

Instance Plan Length # Rules Solver Configuration # Runs CPU Time [sec]

Scenario 1 (Fig. B.27)
10 blocks (table size 11)

2 989316

handy
1 29.9
2 24.0
3 25.6

jumpy
1 23.8
2 23.9
3 26.2

Scenario 2 (Fig. B.28)
4 blocks (table size 6)

6 285581

handy
1 6.8
2 7.2
3 9.5

jumpy
1 7.0
2 8.2
3 8.4

Scenario 3 (Fig. B.29)
4 blocks (table size 4)

5 44697

handy
1 2.0
2 2.0
3 2.1

jumpy
1 1.8
2 2.1
3 2.1

Scenario 4 (Fig. B.30)
6 blocks (table size 7)

4 259191

handy
1 7.6
2 10.8
3 6.1

jumpy
1 6.8
2 7.2
3 6.5

Scenario 5 (Fig. B.31)
5 blocks (table size 9)

7 1745933

handy
1 108.2
2 83.0
3 78.0

jumpy
1 186.2
2 175.8
3 96.4

Scenario 6 (Fig. B.32)
5 blocks (table size 7)

9 1194702

handy
1 2697.9
2 32.0
3 32.2

jumpy
1 168.2
2 53.2
3 30.7

Scenario 7 (Fig. B.33)
8 blocks (table size 15)

4 6027747

handy
1 819.2
2 707.1
3 695.7

jumpy
1 204.5
2 244.2
3 321.8

Scenario 8 (Fig. B.34)
9 blocks (table size 14)

4 6910706

handy
1 611.4
2 547.0
3 666.3

jumpy
1 210.6
2 368.3
3 337.6

Scenario 9 (Fig. B.35)
8 blocks (table size 5, overhang size 3)

6 871040

handy
1 18.6
2 18.9
3 18.7

jumpy
1 27.4
2 27.7
3 32.6

overhang cannot be computed within the time threshold of 5000 seconds. Similarly, a solution for Scenario 11 cannot be
computed within the threshold. As expected, the computation time for overhang scenarios quickly become intractable as
the maximum overhang size increases.

Table 2 provides the results of evaluations for symmetric and asymmetric bridge scenarios. In particular, the plans for
Symmetric Bridge Benchmarks 1 and 2 characterize stable bridges over 3 and 5 units of gaps between two surfaces of the
same height, respectively. The plans for Asymmetric Bridge Benchmarks 1 and 2 characterize stable bridges over 4 units
of gaps between two surfaces of different heights with 2 and 3 units of height differences, respectively. Larger symmetric
23

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Table 2
Computation time for symmetric and asymmetric bridge benchmarks.

Instance Plan
Length

Rules
Clasp

Configuration

CPU Time [sec]

Runs
With Stability Checks Without Stability Checks

Connectivity
Constraint

Abstract
Goal

Exact
Goal

Abstract
Goal

Exact
Goal

Symmetric Bridge
Benchmark 1

(Fig. 17(a))
2 45498

handy
1 2.0 1.7 1.7 0.9 1.2
2 2.0 1.8 1.6 1.0 1.1
3 2.0 1.7 2.1 0.9 0.9

jumpy
1 1.8 1.7 2.4 0.9 1.2
2 1.7 1.6 1.6 0.9 1.2
3 1.8 1.7 2.5 0.9 1.2

Symmetric Bridge
Benchmark 2

4 259191

handy
1 537.4 114.7 46.7 48.9 36.8
2 133.1 118.8 53.1 77.7 34.9
3 459.5 150.1 51.8 95.4 37.8

jumpy
1 71.9 61.2 54.7 47.5 37.8
2 398.4 68.4 58.4 60.4 38.0
3 540.8 76.5 57.4 60.4 35.2

Asymmetric Bridge
Benchmark 1

(Fig. B.40)
6 1745933

handy
1 2693.8 548.2 145.9 459.5 108.0
2 434.9 430.6 292.1 484.9 117.0
3 790.6 585.6 180.1 297.3 139.6

jumpy
1 163.9 438.3 161.7 292.3 72.3
2 605.7 409.6 145.9 312.1 105.8
3 298.2 461.3 173.0 261.9 113.3

Asymmetric Bridge
Benchmark 2

6 1688641

handy
1 1023.0 423.9 209.2 83.6 52.1
2 3877.6 897.4 310.3 117.2 68.3
3 3688.5 776.5 188.5 115.0 90.4

jumpy
1 6967.0 92.7 171.3 94.7 53.2
2 5209.5 361.4 113.0 79.2 60.3
3 timeout 297.5 203.9 101.4 50.4

and asymmetric bridge scenarios shown in Figs. B.38, B.39, and B.41 are not included in the evaluations, as these instances
cannot be solved within the 5000 second time threshold.

Experiments 2: granularity of goal specifications There may be multiple goal configurations of blocks depending on the desired
conditions about the final structure, and all of them may not be stable. In such cases, finding a stable goal configuration is
a challenge.

To evaluate the effect of the granularity of goal specifications on the computational efficiency, three different descriptions
of a goal configuration are tested:

• Case (i) only the connectivity of the two sides of a river is provided as a constraint to describe the goal;
• Case (ii) in addition to the connectivity constraint, an abstract description of which block is on top of which other block

is specified; and
• Case (iii) in addition to the connectivity constraint, for each block, an exact definition of which unit is on top of which

unit of other blocks is provided.

Intuitively, Case (i) simply asks the system to “build a bridge that connects two sides”, Case (ii) specifies to “build a bridge
where block M1 is on block M3, etc.”, and Case (iii) specifies to “build a bridge where the unit space 2 of block M1 is on
the unit space 3 of the block M3, etc.”.

The results of our experiments are presented in Table 2. The results indicate that, similar to the overhang scenarios, the
computation time for bridge scenarios quickly becomes intractable as the gap and the height difference between the sides
increases.

Moreover, Table 2 provides evidence that the computation time decreases, as the goal specifications become more precise.
In particular, Case (iii) takes the least amount of time, as a stable goal configuration is provided as an input to the automated
reasoner.

Experiments 3: stability checks To evaluate the effect of integrating stability checks on the computational efficiency, the
experiments for Case (ii) and Case (iii) were also run when the feasibility checks were turned off (i.e., the stability checks
return True for all instances). It is important to underline that we have not modified the domain description. Instead, we
have modified the stability checkers so that they always return a positive response. We have also ensured that, for each
scenario, the length of the plan is the same as the length of the plan computed with stability checks. In this way, the sizes
of the programs are very close to each other, with or without stability checks.
24

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Please note that, the results of computations without the stability checks are highly likely to be infeasible as the stability
of the intermediate and/or goal states are not ensured. Along these lines, these results need to be verified with a physics
engine and some sort of replanning needs to be performed until a plan is verified to be feasible [31].

Table 2 shows that the integration of the stability checks increases the computation time, especially for larger scenarios.
For instance, the results for Asymmetric Bridge Benchmark 2 indicate that, when an abstract goal configuration is provided,
the computation of a solution with the feasibility checks takes 2 to 5 times longer. However, please note that since the
feasibility of a plan cannot be ensured when the stability checks are turned off, it is likely that more than 5 different
plans need to be computed until a plan can be verified to be feasible. Hence, integration of the stability checks, in general,
presents a more efficient means to compute a feasible plan as discussed in [31].

Further discussions Let us discuss the results of these experiments in the light of how dlvhex handles external atoms.
dlvhex replaces external atoms with auxiliary atoms, and introduces auxiliary rules so that the answer sets of the original
program correspond to a subset of the answers sets of the resulting program where the auxiliary atoms faithfully represent
the values of the external atoms. While this compatibility check is done, dlvhex learns “nogoods” describing conditions
which contradict the semantics of external atoms, and utilizes nogoods to restrict the search space.

While the strategy of learning nogoods improves the computational performance for certain domains, it has been ob-
served by Eiter et al. [24] in a robotic domain that this strategy may lead to inefficient computations: since the external
atoms depend on a large part of the interpretation (e.g., locations of all blocks), learning nogoods from evaluations of
external atoms cannot simply cut away significant portions of the search space. We make similar observations in robot
construction problems.

Furthermore, in particular in the bridge and overhang scenarios, we observe an increase in the computation time when
the goal condition is provided as a set of connectivity constraints, leading to a very large number of possible goal configu-
rations for the blocks. Note that the computation times decrease as the goal conditions become more restrictive, as can be
observed under the abstract goal and exact goal conditions.

7. Solving robot construction problems with hybrid planning: implementation and execution

To verify the executability of the plans computed by our method and to show their applicability with real robots, we
have completed dynamic simulations and physical implementations of several benchmark scenarios.

We have considered the scenarios shown in Figs. 5, 6 and 19 as they present several interesting scenarios to show the
applicability of our formal approach to address challenging robot construction problems.

Figs. 5 and 6 present four scenarios that demonstrate the need for (a) manipulation of subassemblies, (b) utilization
of counterweights, (c) use of scaffolds, and (d) true (non-serializable) concurrency to ensure stable construction of certain
structures.

For instance, Fig. 5a demonstrates manipulation of subassemblies, where a sub-assembly comprises of two or more
blocks being manipulated together by a single manipulator. The stability of the assembly and the subassemblies are ensured
throughout the plan. Note that, in this scenario, not only it is challenging to decide on which sub-assemblies may be used
for efficient construction, but also to ensure the stability of the sub-structures and represent the effects of manipulating a
sub-assembly, due to ramifications.

Fig. 5b presents a scenario where counterweights are introduced temporarily to balance the weight of the structure, so
that it remains stable during the construction. At the time step 3, the robot places M1 with its Lef t arm on L1 to be used
as a temporary counterweight. Note that this counterweight ensures the stability of the construction at the next time step.
In the end, the robot places M1 on the table, as M1 is used only as a counterweight to temporarily to balance the structure
and is not part of the final stable configuration. Note that deciding the use of counterweights as part of a hybrid plan is
challenging.

Fig. 6a presents a scenario where scaffolding is used to temporarily support the construction. In scaffolding, instead of
supporting the structure from above by introducing a heavy object, the structure is supported from below. Note that, at
time step 3, S4 is placed as a scaffold to support the structure. In the end, the robot moves S4 away from the structure as
it is not part of the final stable configuration. Note that deciding the use of scaffolds as part of a hybrid plan is challenging.

Fig. 6b demonstrates a scenario where non-serializable true concurrency is required. In this scenario, we assume that
counterweights, scaffolds or subassembly manipulations are not allowed. At time step 4, the robot concurrently places S1
and S2 on either end of L1 to achieve a final stable configuration. Note that if the last actions are not executed concurrently,
the structure would become unstable. Allowing true concurrency in planning is a challenging problem, from the perspectives
of both representation and reasoning.

Fig. 19 depicts a plan to construct an overhang of 4 units from the edge of the table by a bimanual manipulator. Here,
blocks C1–C4 are used as counterweights and blocks M1–M3 are used to create the overhang.

7.1. Dynamic simulation

Dynamic simulations are implemented in Gazebo [56] version 7. The positions of all the blocks are known initially.
After computing a task plan, OMPL [90] is used to generate a motion plan for every action in the construction plan, and
MoveIt [14] commander is used to follow that motion plan.
25

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. 26. Snapshots present dynamic simulation of a sample construction problem with a bimanual Baxter robot.

Fig. 26 presents snapshots from a dynamic simulation of a sample construction problem with a bimanual Baxter robot.
In this scenario, the medium block is used as a counter weight to prevent the structure from falling.

Initially all the blocks are on the table and the robot picks up a small block, as in Snapshot Initial. The robot places the
small block on the table and picks the large block in Snapshot 1. Robot places the large block on the small block and picks
the medium block in Snapshot 2. The robot places the medium block on the large block in Snapshot 3. The robot places
the small block on the large block and picks up another small block in Snapshot 4. The robot places the small block on the
large block in Snapshot 5. The robot picks up the medium block in Snapshot 6 and places it on the table in Snapshot Goal.

Dynamic simulations of several interesting construction planning scenarios are presented at https://www.youtube .com /
watch ?v =LDJIH _dViOU.

7.2. Execution

After a construction plan is computed for a particular scenario, and continuous motion trajectories for robot manipulators
are computed using OMPL, a physical execution is performed.

We have used a Baxter robot, a bimanual robot with two seven degrees of freedom arms, for execution of construction
plans. Three kinds of blocks are utilized: small, medium and large. The size of the smallest block is 30 × 30 × 30 mm3, the
size of a medium-sized block is 90 × 30 × 30 mm3, and the size of the largest block is 150 × 30 × 30 mm3. All blocks are
machined from aluminum, and are spray-painted with different colors to simplify object identification.

A video of a sample physical execution of construction plans is also presented at https://www.youtube .com /watch ?v =
RyUeMaBERtw.

8. Related work

To the best of authors’ knowledge, this is the first robotic construction study that addresses a variety of multi-robot
stack rearrangement planning problems for building stable structures of different sorts. In the literature, there exist several
studies that focus on different specific aspects of the robotic construction task: deciding for the stability of a given structure
26

https://www.youtube.com/watch?v=LDJIH_dViOU
https://www.youtube.com/watch?v=LDJIH_dViOU
https://www.youtube.com/watch?v=RyUeMaBERtw
https://www.youtube.com/watch?v=RyUeMaBERtw

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
(e.g., from an image obtained from Angry Birds), deciding for the existence of a specified stable structure (e.g., a maximum
overhang) from a given set of identical blocks or an unspecified stack from a given set of different sizes of objects (e.g., like
stones), planning for towers of identical blocks (e.g., the blocks world) ignoring stability, etc. Let us go over them to better
emphasize the challenges of the robot construction problems that we study.

The blocks world: The well-known (elementary) blocks world problems [105] have been widely studied by AI com-
munity. It is proven to be NP-complete to decide the existence of a plan whose makespan is less than a given positive
integer [46, Theorem B.5]. Blocks world problems are quite restricted compared to robot construction problems, since while
proposing the problem, Winograd’s interest was in language rather than in construction problems. For instance, the blocks
world deals with identical blocks and allows a block to be placed on a flat surface or on another block, but not on multiple
blocks as necessitated by the robot construction problems. It does not allow manipulation of subassemblies, use of coun-
terweights and scaffolds, or concurrent placements of blocks, either. Also, there is no consideration of feasibility checks to
ensure the stability of the stack at each step of a plan.

Later, Fahlman [36] has introduced a set of robot construction problems where the goal is for a robot to build specified
structures out of simple blocks of different shapes and sizes. These problems allow incorporation of subassemblies into the
final design, and the use of extra blocks as temporary supports or counterweights during construction; they also consider
collisions of blocks and instability of the structures, but not motion planning. Fahlman’s main interest was in maximizing
common sense (rather than soundness, completeness or optimality). He implemented a planning system (called Build) to
solve some of these problems. Build utilizes the programming language Conniver [68,91] to control and invoke procedures
(rather than backtracking search based on failure), guided with heuristics. Therefore, as Fahlman notes in his paper [36],
most of the effort in Build is spent to implement procedures (e.g., for constructing a subassembly, or for checking stability
check of a subassembly). Fahlman’s robot construction problems have not been investigated with a formal approach since
then.

Maximum overhang puzzle: Mathematicians and theoretical computer scientists have studied a classic puzzle that aims
to determine the maximum overhang achievable by a stack of identical blocks [47,76,75,77]. A relatively recent solution [75,
77] to this 150 year old puzzle, honored with the prestigious David P. Robbins Prize in mathematics, has introduced the use
of blocks as counterbalance to improve upon the well-established solution. While the maximum overhang problem focuses
on the determination of a stable and optimal final configuration of identical blocks, the planning aspects of the construction
problem to attain the goal configuration is not considered within the scope of these studies.

Image understanding and qualitative reasoning in games: Applications in scene understanding from 2D pictures and
computer games require inferring physical relations among objects [46,54,86]. Determination of stability of stacked objects
and supportedness among objects have been studied, commonly with qualitative reasoning approaches [97]. Determination
of stable final configuration of constructions has also been studied in computer games, like Angry Bird [37,86,13]. These
studies focus on the physical relations of a given final configuration and do not address the block rearrangement problem
to build stable constructions.

Stability of assemblies: In robotics, static stability [6,63,64,82,66,106,102,69] and dynamic stability [74,84] of assemblies
with and without friction have been thoroughly studied. The computational complexity of determining the assembly stability
in 2D is established in [73]. The stability determination techniques have been utilized in several robotic applications, that
include a Jenga playing robot [99], multiple robots building a ramp [70], an autonomous robot stacking a balancing vertical
tower out of irregularly shaped stones [38], and a robot dry stacking irregular objects to build large piles [92]. Note that, in
these studies, the challenging task planning aspect of construction planning has not been addressed.

Toussaint [95] has utilized stability checks for building some tallest stable tower from a set of unlabeled cylinders and
blocks; no goal condition is specified. His method applies a restricted version of task planning to decide for the order of
manipulation actions, based on simple Strips operators and Monte Carlo tree search, and considers a restricted form of
stability check that depends on whether the objects are placed on support areas of other objects. Due to these restrictions,
his method is limited to building towers with sequential plans.

Note that for sophisticated constructions that involve temporary scaffolding, counterweights, and subassemblies, it is
necessary to express ramifications of actions as well as true concurrency. However, as discussed in the introduction, ex-
pressing ramifications directly by simple Strips operators is challenging [93, Theorem 3] due to lack of logical inference.
Also, expressing true concurrency directly is challenging as the domain description needs to be extended with exponential
number of new operators, where each operator characterizes a concurrent action. Due to these theoretical results, other
studies [32,48,96] that rely on simple Strips operators, do not present general methods for such sophisticated constructions
either.

It is important to note that these methods do not cover sophisticated structures, like bridges or overhangs, since objects
are not necessarily placed on support areas of other objects. Such sophisticated structures require definition of transitive
closure to ensure supportedness or connectedness. Transitive closure is not definable in first-order logic [35, Theorem 5]; it
is not directly supported by Strips either [93], in general.

Assembly planning: In automated manufacturing, assembly plans aim to determine the proper order of assembly op-
erations to build a coherent object. During assembly planning, the goal configuration is well-defined and the problem is
generally approached by starting with the goal configuration and working backwards to disassemble all parts. Object sta-
bility has also been considered within this context [8,62,83,104,80,5,98]. The assembly planning problem is significantly
different from the robotic construction problems: on the one hand, it allows assembly of irregular objects; on the other
27

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
hand, the goal configuration is pre-determined and solutions are commonly restricted to monotone plans where an object
is moved at most once.

Rearrangement planning: Geometric rearrangement with multiple movable objects and its variations (like navigation
among movable obstacles [88,87]) have been studied in literature. Since even a simplified variant with only one movable
obstacle has been proved to be NP-hard [103,19], many studies introduce several important restrictions to the problem, like
monotonicity of plans [16,20,89,2,72,58,57]. While a few can handle nonmonotone plans [52,59]; these studies do not allow
stacking either. Recently, Han et al. [49] study rearrangement of objects in stack-like containers (by pushes and pops); these
problems do not require stability checks.

Hybrid planning: Hybrid planning has been generally concerned about the problem of combining task planning with
feasibility checks. Recent work on hybrid planning usually considers feasibility checks based on motion planning, and can
be described in three groups with respect to their computational approaches: (i) by developing/modifying search algorithms
for task planning that utilize motion planning [45,51,3,55,60,85,1], (ii) by utilizing formal methods and relevant solvers [78,
17,18], or (iii) by formally embedding motion planning as part of representations of actions (in the spirit of semantic
attachments [101]) and using relevant automated reasoners [11,21,53,39,27,31,4,40,94]. The studies in the third group are
further extended to HTN planning [65] and conditional planning [71].

Our approach to hybrid planning for construction problems is similar to the studies in the third group since we embed
feasibility checks in action descriptions, and utilize ASP solvers to solve hybrid planing problems. On the other hand, our
study is different from these studies in two important ways, as necessitated by the challenges of construction problems.
First, we consider stability checks as feasibility checks. The stability checks require the locations of all blocks in the en-
vironment, including the ones on surfaces and the ones being held. This requirement brings about the second important
difference: embeddings of terms (i.e., object constants and variables) in semantic attachments as in the related approaches
are not sufficient anymore, since the stability checks necessitate extensions of predicates (e.g., the predicates on and holding).
Currently, there exists one automated reasoner (i.e., dlvhex) that supports embeddings of predicate extensions in semantic
attachments and that can be used for planning.

Our earlier studies: We have been studying on various hybrid reasoning tasks (e.g., assembly planning [11,27], rear-
rangement planning [52], conditional planning [79,71], diagnosis [81], explanation generation [15]) for robotics applications.
In these studies, we have considered different feasibility checks based on motion planning, such as reachability and gras-
pability checks, and investigated hybrid reasoning methods based on action languages [42,44] or ASP languages [12] to
find solutions. From the perspective of hybrid planning applied to manipulation tasks, this study is different from our ear-
lier studies in the following ways. First, manipulation tasks for a construction involve not only table-top picks and places
but also stacking, subassemblies, bridges and overhangs. These possibilities lead to global constraints and goal conditions
that require recursive definitions. Also, due to different sizes of blocks, manipulation actions lead to many sophisticated
positive and negative ramifications that utilize recursive definitions. As discussed above, construction problems require sta-
bility checks whose embeddings in action descriptions necessitate extensions of predicates; this is challenging for existing
automated reasoners.

9. Conclusion

We have studied multi-robot construction problems that are challenging for both AI and Robotics not only due to mod-
eling challenges (e.g., ramifications of manipulation actions, true concurrency of actions, supportedness of blocks by other
blocks), but also due to necessity of stability checks of constructions as they are being built. We have addressed these
challenges by a hybrid planning framework developed over the logic-based formalism and automated reasoners of Answer
Set Programming (ASP): ASP allows true concurrency, embedding outcomes of stability checks into state constraints by ex-
ternal atoms, recursive definitions of sophisticated concepts, like supportedness and connectedness, and nested recursive
definitions of global positions of blocks from their relative positions. Thanks to the expressive knowledge representation
languages of ASP, our hybrid planning framework is general enough to solve a variety of construction problems.

We have provided theoretical guarantees on soundness and completeness for our formal framework, with respect to
the desired properties of constructions (e.g., absence of nonsensical structures such as circular configurations of blocks,
connectedness of the two sides of a bridge, stability of constructions).

We have introduced a diverse set of challenging robot construction benchmark instances that include bridges and
overhangs constructed with counterweights, scaffolding and true concurrency of manipulations. We have discussed the
usefulness of our framework over these instances, performed experiments to investigate the computational performance of
our hybrid method, and demonstrated the applicability of our method using a bimanual Baxter robot. Such a benchmark
set of different types of construction and such demonstrations with real robots are useful to advance studies on robot
construction problems, hybrid planning, and knowledge representation.

Future work Robot construction problems present further interesting challenges to knowledge representation and reason-
ing, planning, and robotics. For instance, allowing blocks of different heights, width, shapes, or orientations would lead to
more sophisticated ramifications. Allowing blocks to be manipulated by multiple robots, or considering environments with
restricted spaces would require more involved feasibility checks.
28

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Discussion This study has been highly interdisciplinary and involved handling challenges from the perspectives of knowl-
edge representation and reasoning, planning, and robotics. It has led to synergies not only between planning and robotics,
but also between knowledge representation (in particular, reasoning about actions and change) and planning.

We believe that the challenges involved in formally representing the construction domain and devising methods that can
provide solutions to construction problems with soundness and completeness guarantees, are inspiring for further studies
in knowledge representation and reasoning, planning, and robotics.

In this study, we have addressed the challenges of construction problems using the knowledge representation and rea-
soning paradigm of ASP, since it has provided us with an expressive language and an efficient solver with the capability of
integrating external computations. Note that ASP languages have not been introduced specifically to reason about actions
and change or planning; ASP is applied to solve problems in a variety of applications [42]. Therefore, investigating the
challenges of construction problems using languages particularly designed for reasoning about actions and change and for
planning is an open research problem.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

We thank Stefan Edelkamp and Robert Mattmueller for useful discussions about the problem of representing global con-
straints in PDDL, and methods to handle it with the current state-of-the-art planners. We thank Scott Fahlman for sharing
his experiences on robot construction problems and for useful discussions; they have provided a better understanding of
these problems for us. We also thank the Editor-in-Chief, the Associate Editor, and the anonymous reviewers for their useful
suggestions and remarks to improve the manuscript.

Appendix A. Proofs

Let us first present the definitions and theorems that we use in the proofs of Propositions 3–7.

A.1. Transitive closure in ASP

Erdem and Lifschitz [29] consider nondisjunctive programs that consist of rules of the form

Head ← Body,

where Head is a literal or ⊥ and Body is a formula, and consider the following definition Def of the transitive closure of tc
of a binary relation p:

tc(x, y) ← p(x, y)

tc(x, y) ← p(x, v), tc(v, y).
(A.1)

Then they prove its correctness:

Proposition 4 of [29]. Let � be a program that does not contain atoms of the form tc(x, y) in the heads of rules. If X is an
answer set for � ∪ Def then {〈x, y〉 : tc(x, y) ∈ X} is the transitive closure of {〈x, y〉 : p(x, y) ∈ X}.

Moreover, they provide a syntactic condition to ensure the well-foundedness of p:

Proposition 5 of [29]. If � contains a constraint

← tc(x, x)

and C is finite, then for every set X of literals that is closed under � ∪ Def , the set {〈x, y〉 : p(x, y) ∈ X} is well-founded.
29

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
A.2. Equivalent transformations in ASP

Erdem and Lifschitz [28] consider disjunctive programs that consist of rules of the form:

α1 ∨ · · · ∨ αk ← β1, . . . , βn,not βn+1, . . . ,not βm

where m, k ≥ 0, each αi and each βi are literals. They prove that, in such programs, some disjunctive rules can be replaced
by nondisjunctive rules, preserving the answer sets for the program.

Theorem 1 of [28]. For any program � and any atom p, the programs

p ∨ ¬p ←
and the program

p ← not ¬p
¬p ← not p

have the same answer sets.

A.3. Definitions and constraints in ASP

Erdogan and Lifschitz [33] consider a more general form of programs that consist of rules of the form

Head ← Body,

where Head and Body are formulas, and prove that adding a definition to such a program produces a conservative extension.

Proposition 3 of [33]. Let �1 be a program and Q be a set of atoms that donot occur in �1. Let �2 be a program that
consists of rules of the form

q ← F

where q ∈ Q , and F does not contain any element of Q in the scope of negation as failure. Then Z �→ Z \ Q is a 1-1
correspondence between the answer sets for �1 ∪ �2 and the answer sets for �1.

They also prove that adding constraints eliminate undesired answer sets.

Proposition 2 of [33]. For any program � and a formula F , a set Z of literals is an answer set for � ∪ {← F } iff Z is an
answer set for � and does not satisfy F .

A.4. Defining reachability in ASP

A binary relation p over a finite set C of object constants, can be viewed as a digraph where the vertices denote elements
of C and the edges denote the relation p. In this graph, the reachability of a vertex x from a given vertex Source by a path
whose length is at most k can be defined in ASP as follows:

reachable(1, x) ← p(Source, x)
reachable(n + 1, x) ← p(y, x), reachable(n, y). (1 ≤ n < k)

(A.2)

Let us denote this definition of reachability by Def . The following lemmas state that this definition is correct.
Consider programs that consist of rules of the form

Head ← Body,

where Head is a literal or ⊥ and Body is a formula.
For every n (1 ≤ n < k), let Rn denote the set of vertices reachable from Source by a path defined with respect to p and

whose length is at most n.

Lemma 1. Let � be a positive program that does not contain atoms of the form reachable(n, y) in the heads of rules, and that defines
the binary relation p. Let X be the answer set for � ∪ Def . For every n (1 ≤ n < k) and for every vertex y, reachable(n, y) ∈ X iff
y ∈ Rn.

Lemma 2. Let � be a program that does not contain atoms of the form reachable(n, y) in the heads of rules, and that defines the
binary relation p. If X is an answer set for � ∪ Def then every element of the set {y : reachable(n, y) ∈ X, 1 ≤ n < k} is reachable from
Source by a path whose length is at most n. Furthermore, for every vertex x reachable from Source by a path whose length is at most n
(1 ≤ n < k), there is some answer set X for � ∪ Def such that x is in {y : reachable(n, y) ∈ X, 1 ≤ n < k}.
30

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Proof of Lemma 1. Note that, since � is a positive program, it does not contain negation as failure. Let X be the answer
set for � ∪ Def . Take n to be any number such that 1 ≤ n < k, and take x to be any vertex. We need to prove that
reachable(n, y) ∈ X iff y ∈ Rn .

Left-to-right. Since there is no negation as failure in �, X can be characterized as the union of
⋃k

i=0 Xi of the sequence of
sets of literals defined as follows: X0 = ∅; Xi+1 is the set of all literals L such that � ∪ Def contains a rule L ← Body with
Body satisfied by Xi .

We show by induction on i that reachable(i, y) ∈ Xi implies y ∈ Ri . If i = 0, the assertion holds since X0 = ∅. Assume that,
for every x and i, reachable(i, y) ∈ Xi iff y ∈ Ri . Take any atom reachable(i +1, y) from Xi+1. Take a rule reachable(i +1, y) ←
Body in � ∪ Def such that Xi satisfies Body. Since � does not contain atoms of the form reachable(n, y) in the heads of
rules, this rule belongs to Def . Since i > 0, Body = p(y, x), reachable(i, y). Then p(y, x), reachable(i, y) ∈ Xi ⊆ X . By induction
hypothesis, y ∈ Ri . Then, x is reachable from Source by a path of length i + 1.

Right-to-left. Since X = ⋃k
i=0 Xi , it is sufficient to prove that, for every i > 0, y ∈ Ri implies reachable(i, y) ∈ X . The proof is

by induction on i. When j = 1, y ∈ R1 so that p(Source, y) ∈ X . Since X is closed under Def , it follows that reachable(1, y) ∈
X1. Assume that, for every i > 1, y ∈ Ri implies reachable(i, y) ∈ X . Take x from Ri+1. Then there is a vertex y in Ri such
that there is an edge from y to x. Then p(y, x) ∈ X and, by induction hypothesis, reachable(i, y) ∈ X . Since X is closed under
Def , it follows that reachable(i + 1, y) ∈ X . �
Proof of Lemma 2. Let � be a program that may contain negation as failure but that does not contain atoms of the form
reachable(n, y) in the heads of rules. Suppose that � defines a binary relation p. That is, every answer set Y for � char-
acterizes a binary relation p. For every n (1 ≤ n < k) and Y , let RY ,n denote the set of vertices reachable from Source by a
path defined with respect to p defined in Y , and whose length is at most n.

Let X be an answer set for � ∪ Def . Then X is the answer set for �X ∪ Def X = �X ∪ Def . Let Q be the set of all atoms of
the form reachable(n, y). By Proposition 3 of [33], X \ Q is the answer set for �X and thus defines p. By Lemma 1 applied
to �X , for every n and y, reachable(n, y) ∈ X iff y ∈ R X\Q ,n . �
A.5. Proof of Proposition 1

Let us recall the definition (5) of the global location of a block vertically in a tower on the table:

globalPos(b, v,1, x, t) ← on(b, v,Table, x, t)
globalPos(b, v,h, x, t) ← globalPos(b′, u,h−1, x, t),on(b, v,b′, u, t),

and the definition (6) of the global location of a block horizontally with respect to a block at the same height:

globalPos(b, v+1,h, x+1, t) ← globalPos(b, v,h, x, t) (v<size(b))

globalPos(b, v−1,h, x−1, t) ← globalPos(b, v,h, x, t) (v>1)

Proposition 1. Let �′ be the disjunctive program shown in Figs. 7–11. Then, for every block b supported by the table, rules (5) ∪
(6), when added to �′ , correctly describe its global position with respect to its height h from the table and the distance x from the
leftmostside of the table.

The proof of Proposition 1 follows from the observation that �′ does not contain atoms of the form globalPos(b, v, h, x, t)
in the heads of its rules, that the disjunctive program �′ can be equivalently transformed into a nondisjunctive program
(Theorem 1 of [28]), and the correctness of the recursive reachability definition (Lemma 2).

Proof. Let �′ be the disjunctive program shown in Figs. 7–11. First, observe that, thanks to Theorem 1 of [28], each
disjunctive rule like

pick(a,b, t) ∨ ¬pick(a,b, t) ←
describing the occurrences of an action can be replaced a pair of nondisjunctive rules as follows

pick(a,b, t) ← not ¬pick(a,b, t)
¬pick(a,b, t) ← not pick(a,b, t).

Let �′′ denote this nondisjunctive program.
With the program (5) ∪ (6), at every time step t and for every block b supported by the table, we identify the global

locations of a unit space v of a block b by its height h from the table, and by the number x of unit spaces it is from the
leftmostside of the table.

In fact, at every time step t , we consider an immediate-connectedness relation p between a block unit 〈b, v〉 and a
block/table unit 〈b′, v ′〉 iff one of the following three conditions hold: (i) 〈b, v〉 is located on 〈b′, v ′〉 (specified by atoms of
31

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
the form on(b, v, b′, v ′, t)), (ii) b = b′ and v ′ = v + 1, or (iii) b = b′ and v ′ = v − 1. Then, at every time step t , for every
table unit 〈Table, x〉, we identify the block units reachable from it with a program similar to (A.2) and define their global
locations recursively with respect to height and width. Base case: Take any block b on the table and any unit space v of that
block. Suppose that the block unit 〈b, v〉 is located x units from the leftmostside of the table. Then the global location of
〈b, v〉 is (0, x). This is expressed in the first rule of (5). Inductive step: Suppose that the global location of 〈b′, v ′〉 is (h, x).
If (i) holds then the global location of 〈b, v〉 is (h + 1, x). This is expressed in the second rule of (5). If (ii) holds, then the
global location of 〈b, v〉 is (h, x + 1). This is expressed in the first rule of (6), respecting the size of the block. If (iii) holds,
then the global location of 〈b, v〉 is (h, x − 1). This is expressed in the second rule of (6), respecting the size of the block.

Then this definition of reachability of block units from table/box units based on the immediate-connectedness is correct
thanks to Lemma 2 applied to �′′ . For every answer set X for �′′ ∪ (5) ∪ (6), the following holds:

• For every time t , for every unit space v ′ of a block b′ globally located at a distance x from the leftmostside of the table
at time t , 〈b′, v ′〉 ∈ {〈b, v〉 : globalPos(b, v, h, x, t) ∈ X} iff the unit 〈b′, v ′〉 is reachable from the unit 〈Table, x〉 with a
tower of height h based on the immediate-connectedness relation.

• For every time t , for every unit space v ′ of a block b′ globally located at a height h from the table at time t ,
〈b′, v ′〉 ∈ {〈b, v〉 : globalPos(b′, v, h, x, t) ∈ X} iff the unit 〈b′, v ′〉 is reachable from the unit 〈b′, v〉 with the immediate-
connectedness relation. �

A.6. Proof of Proposition 2

Let us recall that the empty spaces above the table are defined in rules (7) as the global positions (h, x) not occupied by
any blocks:

empty(h, x, t) ← #count{b : box(b),globalPos(b, v,h, x, t)} = 0 (h > 0).

Proposition 2. Let �′ be the disjunctive program shown in Figs. 7–12, except for rules (7). Then, for every time step t and for every
block b supported by the table, rules (7), when added to �′, correctly describe the global positions (h, x) of empty spaces at time t.

Proof. Let �′ be the disjunctive program shown in Figs. 7–12, except for rules (7). First, observe that, thanks to Theorem 1
of [28], each disjunctive rule like

pick(a,b, t) ∨ ¬pick(a,b, t) ←
describing the occurrences of an action can be replaced a pair of nondisjunctive rules as follows

pick(a,b, t) ← not ¬pick(a,b, t)
¬pick(a,b, t) ← not pick(a,b, t).

Let �′′ denote this nondisjunctive program.
Note that �′′ does not contain atoms of the form empty(h, x, t) in the heads of its rules. Then we can replace atoms of

the form empty(h, x, t) in the bodies of rules in �′′ by expressions of the form #count{b : box(b), globalPos(b, v, h, x, t)} = 0,
where h > 0. Let �′′′ denote this nondisjunctive program.

Then, by Proposition 3 of [33], adding the definition (7) to �′′′ ensures that the answer sets for �′′′ are conservatively
extended to define empty spaces. �
A.7. Proof of Proposition 3

Let us recall the definition (8) of supportedness,

supported(b, l, t) ← onAux(b, l, t).
supported(b, l, t) ← onAux(b, l′, t), supported(l′, l, t) (b �=l′),

and the acyclicity constraint (9).

← supported(b,b, t).

Proposition 3. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (8), when added to �, correctly describe the sup-
portedness of blocks by other blocks or by the table. Furthermore, adding constraints (9) to � ∪ (8) guarantees the desired feature D1
(i.e., no circular configuration of blocks occurs in construction at any time step 0..T − 1).
32

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
The proof follows from (i) Theorem 1 of [28] about an equivalent representation of disjunctive rules about occur-
rences/nonoccurrences of actions by nondisjunctive rules, (ii) the observation that � does not contain atoms of the form
supported(b, l, t) in the heads of its rules, and (iii) Propositions 4 and 5 of [29] about the correctness and well-foundedness
of the transitive closure of a relation defined recursively in ASP.

Proof. The proof consists of two parts: correctness of the supportedness definition, and guarantee of no circular configura-
tions.

Part 1. The correctness of supportedness definition follows from Proposition 4 of [29] about the correctness of the transitive
closure of a relation defined recursively in ASP.

Let � be the disjunctive program that describes the construction domain, as shown in Figs. 7–12. First, observe that,
thanks to Theorem 1 of [28], each disjunctive rule like

pick(a,b, t) ∨ ¬pick(a,b, t) ←
describing the occurrences of an action can be replaced a pair of nondisjunctive rules as follows

pick(a,b, t) ← not ¬pick(a,b, t)
¬pick(a,b, t) ← not pick(a,b, t).

Let �′ denote this nondisjunctive program.
Let Def be the supportedness definition (8). Then, by Proposition 4 of [29], for every answer set X for i′ ∪ Def , the

following holds:

At each time step t , {〈b, l〉 : supported(b, l, t) ∈ X} is the transitive closure of {〈x, y〉 : onAux(b, l, t) ∈ X}.

Therefore, the supportedness definition (8) is correct.

Part 2. By Proposition 5 of [29], adding the constraint

supported(b,b, t)

to �′ ∪ Def ensures the well-foundedness of the set {〈x, y〉 : onAux(x, y) ∈ X}, hence, spurious circular configurations of
blocks. �
A.8. Proof of Proposition 4

Let us recall the definition (10) that identify blocks being supported by the table, being supported by a block being held
by the robot, or being held by the robot:

supportedAux(b,1, t) ← supported(b,Table, t),
#count{a : arm(a),holding(a,b, t)} = 0

supportedAux(b,2, t) ← supported(b,b′, t),holding(a,b′, t) (b �= b′)
supportedAux(b,3, t) ← holding(a,b, t)

and add the constraints (11) to ensure that one of these three cases should hold for each block b:

← #count{x : supportedAux(b, x, t)} < 1
← #count{x : supportedAux(b, x, t)} > 1

Proposition 4. Let � be the disjunctive program shown in Figs. 7–12. Then, rules (10), when added to � ∪ (8) ∪ (9), correctly describe
the supportedness of blocks and subassemblies by other blocks, by the table, or by the robot. Furthermore, adding constraints (11) to
� ∪ (8) ∪ (9) ∪ (10) guarantees the desired feature D2 (i.e., no flying blocks, and no blocks supported by both the table and the robot
at any time step 0..T − 1).

Proof. Observe that the program � ∪ (8) ∪ (9) does not contain atoms of the form supportedAux(b, t) in the heads of its
rules.

Then, by Proposition 3 of [33], rules (10), when added to � ∪ (8) ∪ (9), correctly describe the supportedness of blocks
and subassemblies by other blocks: answer sets for � ∪ (8) ∪ (9) ∪ (10) are conservative extensions of � ∪ (8) ∪ (9).

Furthermore, by Proposition 2 of [33], adding constraints (11) to � ∪ (8) ∪ (9) ∪ (10) eliminates answer sets for � ∪ (8) ∪
(9) ∪ (10) that do not satisfy the desired feature D2. Therefore, adding constraints (11) guarantees D2. �
33

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
A.9. Proof of Proposition 5

Proposition 5. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown
in Fig. 16 about supportedness of blocks/subassemblies. Then adding constraints (12) ∪ (13) ∪ (14) to �′ further ensures the desired
features D3–D5 about occurrences of actions.

Proof. Propositions 3 and 4 ensure constructions that satisfy supportedness constraints. By Proposition 2 of [33], adding
constraints (12) ∪ (13) ∪ (14) to �′ eliminates its answer sets that do not satisfy any of D3–D5. Therefore, adding these
constraints guarantees D3–D5. �
A.10. Proof of Proposition 6

Proposition 6. Let �′ be the program obtained from the disjunctive program � shown in Figs. 7–12, and by adding the program shown
in Fig. 16 about supportedness of blocks/subassemblies. Suppose that the stability checking algorithm � is correct (i.e., the construction
is stable iff � returns True). Then adding rules (15) to �′ ensures that, at every time step t, every configuration of blocks assembled on
a flat surface (e.g., table) or being carried by a gripper is stable.

Proof. Propositions 3 and 4 ensure constructions that satisfy supportedness constraints and thus prevent spurious struc-
tures, like flying blocks/subassemblies, circular configurations of blocks, or blocks being supported by both the table and
the robot. Then the proof of Proposition 6 follows from an application of Proposition 2 of [33] about the elimination of
spurious models by adding constraints: adding rules (15) to �′ eliminates its answer sets where the blocks assembled on a
flat surface are not stable or where the blocks being carried are not stable. �
A.11. Proof of Proposition 7

Proposition 7. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′ be the
program obtained from the disjunctive program � shown in Figs. 7–12, by adding the program shown in Fig. 16 about supportedness
of blocks/subassemblies, and by adding the constraints (15) about stability of the construction. Then, adding rules (16) ∪ (17) ∪ (18) to
�′ ensures a stable symmetric bridge (i.e., a construction that satisfies the condition D6) at time step T .

Proof. Propositions 3–6 ensure constructions that satisfy supportedness and stability constraints. By Theorem 1 of [28], the
program �′ ∪ (16) can be transformed into an equivalent nondisjunctive program �′′ . By Proposition 3 of [33], adding the
definition (16) to �′′ ensures that the answer sets for �′ are conservatively extended to define symmetric supportedness
relation. Proposition 4 of [29] ensures that the transitive closure of symmetric supportedness, i.e., definition connectedness, is
correct. Then, further adding (17) extends the answer sets for �′′ ∪ (16) by connectedness relation. By Proposition 2 of [33],
the answer sets that violate D6 at time step T are eliminated. Therefore, adding rules (16) ∪ (17) ∪ (18) to �′′ ensures D6,
and thus a stable symmetric bridge, at time step T . �
A.12. Proof of Proposition 8

Proposition 8. Suppose that the stability checking algorithm � is correct (i.e., the construction is stable iff � returns True). Let �′
be the ASP program obtained from � by adding the supportedness and stability constraints (and, in case of bridge construction, also
the connectedness constraints), and the ramification rules as described above. Then every robot construction plan that satisfies these
desired properties and whose makespan is at most T −1 is characterized by an answer set for �′.

Proof. Due to the representation methodology of the program, candidate robot construction plans are generated by the part
of the program that does not include any constraints. Supported by Proposition 2 of [33], each constraint then eliminates
some of these candidates that violate desired features of a construction and its plan. No constraint in �′ eliminates a valid
robot construction plan. �
Appendix B. Benchmark instances for construction problems and their solutions

In this appendix, we present a set of benchmark instances associated with challenging construction problems. Some
of these benchmarks have been introduced by Fahlman [36]. We introduce an extended set of construction instances as
changing benchmarks and present solutions to these problems computed using our hybrid planning approach.

For some problems, a stable final state and a plan cannot be computed by dlvhex within the time threshold of 5000
seconds, as mentioned in Section 6. In such cases, we also provide a partial plan (e.g., first few actions) as part of input to
further guide the search so that a stable final state and a plan are computed.

As discussed in Section 4.5, unless specified otherwise, the ASP modeling of the construction problem allows true concur-
rency. We can explicitly specify noconcurrency constraints, based on the capabilities of manipulators or desired conditions
34

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.27. Scenario 1 – Incorporation of sub-assemblies into the final design.

Fig. B.28. Scenario 2 [36] [Fig. 1.4] – Pre-assembly of movable a stable sub-structure.

of the construction process. For instance, considering the difficulty of synchronization of actions, it may be desired that a
robotic manipulator does not replace a block with another block at the same time. In our experiments, we take into account
such constraints about occurrences of actions. Without noconcurrency constraints, the plans usually get shorter and thus
their computation times decrease further; this allows computation of solutions for scenarios within time threshold.

dlvhex is a sophisticated system with many options that can be fine tuned for better performance. As mentioned in
Section 6, in our experiments, we have tried different settings of the solver’s configuration (i.e., handy or jumpy). Further
fine tuning of dlvhex might also allow computation of solutions for scenarios within time threshold.

In Scenarios 1–8, the weights of the uniform blocks are assumed to be as follows: W small = 1 unit, Wmedium = 3 units,
and Wlarge = 5 units.

B.1. Sub-assembly manipulation

Sub-assembly manipulation comprises of two or more blocks being manipulated together. In Fig. B.27, a sub-assembly
consisting of the blocks M1, S4 and S5 is being manipulated, as the robot picks the block M1 and places it on top of block
S1. As part of hybrid planning, it is challenging to decide for sub-assembly construction, and to ensure the stability of the
structures. Note that it is also challenging to represent effects of manipulating a sub-assembly, due to ramifications.

Scenario 1 (Fig. B.27)
The construction problem in Fig. B.27 involves incorporation of sub-assemblies into the final design.
The initial state of all the blocks is specified by the following facts:

init(M1,1,Table,1).init(S4,1, M1,1).init(S5,1, M1,3).init(S3,1,Table,6).

init(L1,3, S3,1).init(S1,1, L1,1).init(S2,1, L1,5).init(M2,1,Table,9).

init(S6,1, M2,1).init(S7,1, M2,3,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).goal(S2, L1).goal(M1, S1).

goal(M2, S2).goal(S4, M1).goal(S5, M1).goal(S6, M2).goal(S7, M2).

For such an instance, a plan for a bimanual robot, reads as follows:

0 : pick(Left, M1), pick(Right, M2).
1 : placeOn(Left, M1, 2, S1, 1), placeOn(Right, M2, 2, S2, 1).

Scenario 2 (Fig. B.28)
The construction problem in Fig. B.28 requires first the pre-assembly of movable a stable sub-structure on the table.
The initial state of all the blocks is specified by the following facts:

init(L1,1,Table,1).init(S1,1, L1,3).init(S2,1, S1,1).init(S3,1, S2,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).goal(S2, L1).

For such a problem instance, our planner generates the following plan:
35

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.29. Scenario 3 [36][Fig. 1.9] – Disassembly of pre-assembled parts.

Fig. B.30. Scenario 4 – The use of permanent counter weights to balance out the structure.

0 : pick(Left, S3).
1 : placeOn(Left, S3, 1, T able, 6), pick(Right, S2).
2 : pick(Left, S1), placeOn(Right, S2, 1, L1, 1).
3 : placeOn(Left, S1, 1, L1, 5).
4 : pick(Left, L1).
5 : placeOn(Left, L1, 3, S3, 1).

Note that special attention needs to be paid as to where blocks are placed on L1 to ensure stability.

B.2. Disassembly

Construction problems not only involve building new structures by stacking blocks or sub-assemblies, but also may
require a disassembly of pre-assembled parts to reach the goal.

Scenario 3 (Fig. B.29)
The construction problem in Fig. B.29 cannot be solved by moving one block at a time as in the Blocks World, since the

stability of the overall structure needs to be preserved while executing the plan. It is required to first move the block M1
together with the blocks above it.

Initial state of all the boxes is specified by the following facts:

init(S1,1,Table,1).init(M1,1, S1,1).init(S2,1, M1,1).init(S3,1, S2,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(M1,Table).goal(S1,Table).goal(S3, S1).goal(S2, S3).

Generated plan is as follows:

0 : pick(Left, M1).
1 : placeOn(Left, M1, 1, T able, 2).
2 : pick(Right, S3).
3 : placeOn(Right, S3, 1, S1, 1), pick(Left, S2).
4 : placeOn(Left, S2, 1, S3, 1).

B.3. Counter weights

Counter weights may be required to temporarily or permanently balance a structure, so that it remains stable during and
at the end of the construction. Therefore, deciding for the use of counter weights as part of a hybrid plan is challenging.

Scenario 4 (Fig. B.30)
The construction problem in Fig. B.30 requires use of permanent counter weights to balance out the structure.
The initial configuration is expressed by the following set of facts:

init(S4,1,Table,1).init(S2,1,Table,2).init(S3,1,Table,5).

init(S5,1, S4,1).init(S1,1, S2,1).init(L1,3, S3,1).
36

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.31. Scenario 5 – The use of a temporary counter weight.

Fig. B.32. Scenario 6 – Scaffolding.

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S4, L1).goal(S1, L1).goal(S5, S4).

Generated plan is as follows:

0 : pick(Left, S4).
1 : placeOn(Left, S4, 1, L1, 3), pick(Right, S1).
2 : pick(Left, S2), placeOn(Right, S1, 1, L1, 4).
3 : placeOn(Left, S2, 1, L1, 2).

It is interesting to observe that the block S4 (and the block S5 above it) is moved onto L1 as a counter weight, so that
the blocks S2 and S1 can be moved onto L1 appropriately.

Scenario 5 (Fig. B.31)
The construction problem in Fig. B.31 requires use of a temporary counter weight M1 to balance the structure.
The initial configuration is expressed by the following set of facts:

init(L1,1,Table,1).init(S1,1,Table,6).init(M1,1,Table,7).

init(S2,1, S1,1).init(S3,1, S2,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S1, L1).goal(M1,Table).

The generated plan is:

0 : pick(Left, S3), pick(Right, L1).
1 : placeOn(Left, S3, 1, T able, 3).
2 : pick(Left, M1), placeOn(Right, L1, 3, S3, 1).
3 : placeOn(Left, M1, 1, L1, 2), pick(Right, S2).
4 : pick(Left, S1), placeOn(Right, S2, 1, L1, 1).
5 : placeOn(Left, S1, 1, L1, 5), pick(Right, M1).
6 : placeOn(Right, M1, 1, T able, 6).

B.4. Temporary scaffolding

Similar to counter weights, scaffolding may be needed to temporarily support a construction. In scaffolding, instead of
supporting the structure from above by introducing a heavy object, the structure is supported from below. Deciding for
temporary use of scaffolds as a part of a hybrid plan is challenging.

Scenario 6 (Fig. B.32)
The construction problem in Fig. B.32 necessitates scaffolding, since there does not exist a heavy box or multiple boxes

that can be used as a counter weight in this scenario.
The initial configuration is expressed by the following set of facts:

init(S1,1,Table,1).init(S2,1,Table,2).init(L1,1,Table,3).

init(S3,1, S1,1).init(S4,1, S2,1).
37

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.33. Scenario 7 – True concurrency.

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S2, L1).

goal(S1, L1).goal(S4,Table).

Generated plan is:

0 : pick(Left, L1), pick(Right, S3).
1 : placeOn(Right, S3, 1, T able, 5).
2 : pick(Right, S4).
3 : placeOn(Right, S4, 1, T able, 7).
4 : placeOn(Left, L1, 3, S3, 1), pick(Right, S1).
5 : placeOn(Right, S1, 1, L1, 1), pick(Left, S2).
6 : placeOn(Left, S2, 1, L1, 5).
7 : pick(Left, S3).
8 : placeOn(Left, S3, 1, T able, 4).

B.5. True concurrency of actions

For some construction problems, multiple robots are required to perform truly concurrent (non-serializable) actions
to achieve a task. In particular, it may happen that if some blocks or sub-assemblies are not placed concurrently, the
structure becomes unstable. Allowing true concurrency in planning is a challenging problem, from the perspectives of both
representation and reasoning.

Scenario 7 (Fig. B.33)
Consider the construction problem in Fig. B.33, where M1 and M2 are placed by two concurrent actions. This problem

shows the importance of true concurrency.
The initial configuration is expressed by the following set of facts:

init(M1,1,Table,1).init(S1,1,Table,4).init(S5,1,Table,5).init(S3,1,Table,8).

init(S4,1,Table,11).init(S2,1,Table,12).init(M2,1,Table,13).init(L1,3, S3,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S1,Table).goal(S2,Table).goal(S3,Table).
goal(S5, S1).goal(L1, S3).goal(S4, S2).

goal(M1, S5).goal(M1, L1).goal(M2, L1).goal(M2, S4).

Generated plan is:

0 : pick(Left, S5), pick(Right, S4).
1 : placeOn(Left, S5, 1, S1, 1), placeOn(Right, S4, 1, S2, 1).
2 : pick(Left, M1), pick(Right, M2).
3 : placeOn(Left, M1, 1, S1, 1), placeOn(Right, M2, 3, S4, 1).

When the box M2 is placed on S4, as a direct effect the third unit space of M2 is on the first unit space of S4; as its
indirect effects, the first unit space of M2 is on the fifth unit space of L1. Same effect happens when M1 is placed on S5.

B.6. Ramifications of actions

Representing and reasoning about indirect effects (ramifications) of actions are challenging for planning.
38

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.34. Scenario 8 – Challenging ramifications.

Scenario 8 (Fig. B.34)
The construction problem in Fig. B.34 shows the importance of properly handling ramifications. Here, when L2 is placed

on S2 at the final step, as an indirect effect of this action, L2 becomes on top of the block S7 as well.
The initial configuration is expressed by the following set of facts:

init(S3,1,Table,3).init(S1,1,Table,6).init(S2,1,Table,7).

init(S4,1,Table,8).init(S5,1,Table,9).init(L2,1,Table,10)

init(L1,3, S3,1).init(S6,1, S5,1).init(S7,1, S6,1).

Goal conditions for a final configuration are specified by the set of following facts:

goal(S3,Table).goal(L1, S3).goal(S1, L1).

goal(S2, L1).goal(S4, S1).goal(S5,Table).
goal(S6, S5).goal(S7, S6).goal(L2, S2).goal(L2, S7).

The generated plan is:

0 : pick(Left, S1), pick(Right, S2).
1 : placeOn(Left, S1, 1, L1, 1), placeOn(Right, S2, 1, L1, 5).
2 : pick(Left, S4), pick(Right, L2).
3 : placeOn(Left, S4, 1, S1, 1), placeOn(Right, L2, 1, S2, 1, 1).

B.7. Overhang scenarios

There may be multiple goal configurations of blocks depending on the desired conditions about the final structure, and all
of them may not be stable. In such cases, finding a stable goal configuration is a challenge. For instance, the determination
of the maximum overhang achievable by a stack of identical blocks [47,76] with some blocks used as counterweights [75,77]
is a 150 years old mathematical puzzle with recent solutions.

In the maximum overhang scenarios, in addition to the determination of a stable and optimal final configuration of
blocks, we also address the planning aspect of the construction problem required to attain the goal configuration.

In these sample scenarios listed below, the yellow blocks are used for construction purposes, while the green and purple
blocks are used as counter weights. The yellow and purple blocks occupy 3 unit spaces and green blocks occupy 1 unit
space. The purple and green blocks are denoted by the letters ‘C’ and ‘S’, respectively. In these examples, the purple blocks
are assumed to be 10 times heavier than the yellow blocks, while the green blocks are assumed to be 3 times heavier than
the yellow blocks. In particular, in Scenarios 9–11, the weights of the uniform blocks and counterweights are assumed to be
as follows: Wmedium = 3 units, W smallcounter = 30 units, and Wmediumcounter = 30 units.

Scenario 9 (Fig. B.35)
Consider the construction problem in Fig. B.35 that involves 8 blocks with 5 of them as counter weights. The goal here

is to achieve a maximum overhang of 3 units. This requires careful balancing of weights to stabilize the structure.
The initial configuration of blocks is given as:

init(S1,1,Table,1).init(S2,1, S1,1).init(S3,1,Table,2).init(S4,1, S3,1).

init(S5,1, S4,1).init(M1,1,Table,3).init(M2,1, M1,1).init(M3,1, M2,2).

A stable final state and a plan are computed as follows:
39

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.35. Scenario 9 – Stable construction of a 3 unit overhang. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

Fig. B.36. Scenario 10 – Stable construction of a 4 unit overhang.

0 : pick(Lef t, S3), pick(Right, S1).
1 : placeOn(Lef t, S3, 1, M2, 1), placeOn(Right, S1, 1, M3, 1).
2 : pick(Lef t, M2).
3 : placeOn(Lef t, M2, 1, M1, 2).
4 : pick(Right, M3).
5 : placeOn(Right, M3, 1, M2, 3).

Scenario 10 (Fig. B.36)
The construction problem in Fig. B.36 involves 7 blocks with 4 of them as counter weights. Here the goal is to achieve

an overhang of 4 units.
The initial configuration of blocks is given as:

init(C1,1,Table,3).init(C2,2, C1,1).init(C3,1, C2,1).init(M1,1,Table,6).

init(M2,1, M1,1).init(M3,1, M2,1).init(C4,2, M3,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, C3), pick(Right, M3).
1 : placeOn(Lef t, C3, 2, M2, 1), placeOn(Right, M3, 1, C2, 1).
2 : pick(Lef t, M2), pick(Right, C4).
3 : placeOn(Lef t, M2, 1, M1, 2).
4 : pick(Lef t, M3).
5 : placeOn(Right, C4, 1, C2, 1), placeOn(Lef t, M3, 1, C3, 1).
6 : pick(Right, C1), pick(Lef t, M2).
7 : placeOn(Right, M2, 1, T able, 2).
8 : pick(Lef t, M3).
9 : placeOn(Lef t, M3, 1, M2, 3).
10 : placeOn(Right, C1, 1, C3, 2).
11 : pick(Lef t, M2).
12 : placeOn(Lef t, M2, 1, M1, 2).
40

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.37. Scenario 11 – Stable construction of a 5 unit overhang.

Scenario 11 (Fig. B.37)
In the construction problem in Fig. B.37, an overhang of 5 units is aimed.
The initial configuration of blocks is as follows:

init(C1,1,Table,9).init(C2,2, C1,1).init(C3,1, C2,1).

init(C4,1, C3,1).init(C5,1, C4,1).init(M1,1,Table,12).

init(M2,1, M1,1).init(M3,1, M2,1).init(M4,1, M3,2).init(C6,2, M4,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, M2), pick(Right, C2).
1 : placeOn(Lef t, M2, 1, T able, 6), placeOn(Right, C2, 1, M1, 1).
2 : pick(Lef t, M3), pick(Right, C5).
3 : placeOn(Lef t, M3, 1, M2, 3).
4 : pick(Lef t, M4), placeOn(Right, C5, 2, M2, 1).
5 : placeOn(Lef t, M4, 1, T able, 2), pick(Right, C4).
6 : pick(Lef t, C2), placeOn(Right, C4, 1, C5, 2).
7 : pick(Right, M2).
8 : placeOn(Lef t, C2, 1, C6, 1), placeOn(Right, M2, 1, M1, 2).
9 : pick(Lef t, C6).
10 : placeOn(Lef t, C6, 2, C4, 1), pick(Right, M4).
11 : pick(Lef t, C1).
12 : placeOn(Lef t, C1, 2, C3, 1), placeOn(Right, M4, 1, M3, 2).

B.8. Symmetric bridge scenarios

In bridge construction scenarios, the goal is to join both sides (e.g., of a river) by a stable construction of blocks. These
scenarios require connectedness, as well as the stability. The resulting bridges may be required to be symmetric or asym-
metric, depending on the requirements of the task.

In Scenarios 12–15, the weights of the uniform blocks and counterweights are assumed to be as follows: Wmedium =
3 units, W smallcounter = 30 units, and Wmediumcounter = 30 units.

Scenario 12 (Fig. B.38)
The bridge construction problem in Fig. B.38 involves a distance of 9 units between the two sides. There total 15 blocks

with 6 of them being counter weights.
The initial configuration is expressed by following set of facts:

init(M1,1, LeftSide,1).init(S6,1, M1,1).init(M4,1, M1,2).init(S4,1, S6,1).

init(M6,1, M4,1).init(S2,1, S4,1).init(M7,1, M6,1).init(M2,2,RightSide,1).

init(M3,2, M2,1).init(S5,1, M2,3).init(M5,1, M3,1).init(S3,1, S5,1).

init(M8,1, M5,1).init(S1,1, S3,1).init(M9,2, M8,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, M6), pick(Right, S4).
41

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.38. Scenario 12 – Stable construction of a 9 unit bridge.

1 : placeOn(Lef t, M6, 1, M4, 2).placeOn(Right, S4, 1, M4, 1).
2 : pick(Lef t, M5), pick(Right, S3).
3 : placeOn(Lef t, M5, 3, M3, 2).placeOn(Right, S3, 1, M3, 3).
4 : pick(Lef t, M7), pick(Right, S2).
5 : placeOn(Lef t, M7, 1, M6, 2).placeOn(Right, S2, 1, M6, 1).
6 : pick(Lef t, M8), pick(Right, S1).
7 : placeOn(Lef t, M8, 3, M5, 2).placeOn(Right, S1, 1, M5, 3).
8 : pick(Lef t, M9).
9 : placeOn(Lef t, M9, 1, M7, 3).

Scenario 13 (Fig. B.39)
The bridge construction problem in Fig. B.39 has 7 units distance between the sides. There are 13 blocks with 6 of them

being counter weights.
The initial configuration is given by the following set of facts:

init(M1,1, LeftSide,1).init(M2,1, M1,1).init(M3,1, M2,1).init(M4,1,RightSide,1).

init(M5,1, M4,1).init(M6,1, M5,1).init(M7,2, M6,1).init(C6,1,RightSide,5).

init(C5,2, C6,1).init(C4,1, C5,2).init(C3,2, C4,1).init(C2,1, C3,2).init(C1,2, C2,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, M2), pick(Right, M5).
1 : placeOn(Lef t, M2, 1, M1, 2), placeOn(Right, M5, 2, M4, 1)

2 : pick(Lef t, M3), pick(Right, C3).
3 : placeOn(Lef t, M3, 1, M2, 3), placeOn(Right, C3, 2, M2, 1).
4 : pick(Lef t, M6), pick(Right, C6).
5 : placeOn(Lef t, M6, 3, M5, 1), placeOn(Right, C6, 2, M5, 3).
6 : pick(Lef t, M7).
7 : placeOn(Lef t, M7, 3, M6, 1).

B.9. Asymmetric bridge scenarios

Asymmetric bridge scenarios are similar to the bridge construction scenarios in terms of their goal conditions. The only
difference in these scenarios is that both sides have different heights.

Scenario 14 (Fig. B.40)
This bridge construction scenario in Fig. B.40 involves 9 blocks with 4 being counter weights. The right side is 2 units

higher than left side and the sides are 4 units apart.
42

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.39. Scenario 13 – Stable construction of a 7 unit bridge.

Fig. B.40. Scenario 14 – Stable construction of a 4 unit asymmetric bridge.

The initial configuration is given by the following set of facts:

init(S1,1, LeftSide,1).init(S2,1, S1,1).init(M2,1, M1,1).init(S3,1, S2,1).

init(M3,1, M2,1).init(S4,1, S3,1).init(M4,2,RightSide,1).init(M5,1, M4,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, M2).
1 : placeOn(Lef t, S1, 1, M1, 1).placeOn(Right, M2, 1, M1, 2).
2 : pick(Lef t, S2), pick(Right, M3).
3 : placeOn(Lef t, S2, 1, M2, 1).placeOn(Right, M3, 1, M2, 2).
4 : pick(Lef t, S3), pick(Right, M5).
5 : placeOn(Lef t, S3, 1, M3, 1).placeOn(Right, M5, 1, M3, 3).

Scenario 15 (Fig. B.41)
The bridge construction scenario in Fig. B.41 has 9 blocks with 4 being counter weights. The right side is 4 units higher

than left side and the sides are 5 units apart.
43

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.41. Scenario 15 – Stable construction of a 5 unit asymmetric bridge.

Fig. B.42. Scenario 16 – Maximizing the height of block S3 in a stack of 8 blocks.

The initial configuration is given by the following set of facts:

init(C4,1, LeftSide,1).init(S1,1, LeftSide,4).init(S2,1, S1,1).

init(S3,1, S2,1).init(S4,1, S3,1).init(S5,1, S4,1).

init(S6,1, S5,1).init(S7,1, S6,1).init(M1,1, LeftSide,5).

init(M2,1, M1,1).init(M3,1, M2,1).init(M4,1, M3,1).init(M5,1, M4,1).

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S6), pick(Right, M2).
1 : placeOn(Lef t, S6, 1, M1, 1), placeOn(Right, M2, 1, M1, 2).
2 : pick(Lef t, S5), pick(Right, M3).
3 : placeOn(Lef t, S5, 1, M2, 1), placeOn(Right, M3, 1, M2, 2).
4 : pick(Right, S3).
5 : placeOn(Right, S3, 1, C4, 2).
6 : pick(Lef t, C4), pick(Right, M4).
7 : placeOn(Lef t, C4, 1, S7, 1), placeOn(Right, M4, 1, M3, 2).
8 : pick(Lef t, M5), pick(Right, S1).
9 : placeOn(Lef t, M5, 1, M4, 3), placeOn(Right, S1, 1, M4, 1).

B.10. Tower stacking

In tower staking benchmarks, the goal is to maximize or minimize the height of a particular block in a stack of a given
number of blocks.

In Scenarios 16–21, the weights of the uniform blocks are assumed to be as follows: W small = 3 units, Wmedium = 3 units,
and Wlarge = 5 units.

Scenario 16 (Fig. B.42)
The construction problem in Fig. B.42 aims to maximize the height of block S3 in a stack. There are 8 blocks in the

stack. Initially, all the blocks are on the table.
A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, M2).
1 : placeOn(Lef t, S1, 1, M1, 2).
44

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.43. Scenario 17 – Maximizing the height of block L2 in a stack of 6 blocks.

Fig. B.44. Scenario 18 – Maximizing the height of block L1 in a stack of 4 blocks.

2 : pick(Lef t, S2), placeOn(Right, M2, 2, S1, 1).
3 : placeOn(Lef t, S2, 1, M2, 2), pick(Right, S4).
4 : placeOn(Right, S4, 1, S2, 1, 1), pick(Lef t, S5).
5 : placeOn(Lef t, S5, 1, S4, 1), pick(Right, M3).
6 : placeOn(Right, M3, 2, S5, 1), pick(Lef t, S3).
7 : placeOn(Lef t, S3, 1, M3, 2).

Scenario 17 (Fig. B.43)
The construction problem in Fig. B.43 aims to maximize the height of block L2 in a stack. There are 6 blocks in the stack.

Initial state and the computed goal state is given in Fig. B.43.
A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
1 : placeOn(Lef t, S1, 1, L1, 1), placeOn(Right, S2, 1, L1, 4)

2 : pick(Lef t, S3), pick(Right, S4).
3 : placeOn(Lef t, S3, 1, S1, 1), placeOn(Right, S4, 1, S2, 1).
4 : pick(Lef t, L2).
5 : placeOn(Lef t, L2, 1, S3, 1).

Scenario 18 (Fig. B.44)
The construction problem in Fig. B.44 aims to maximize the height of block L1 in a stack. There are 4 blocks in the stack.

Here, L1 cannot be directly placed on the right side, as there is not enough space, that is, the single unit space on the left
side would cause block L1 to fall without proper support. Note that in this problem specification, there is no requirement
that the two sides should be connected. Initial state and the computed goal state are given in Fig. B.44.

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S2), pick(Right, S1).
1 : placeOn(Lef t, S2, 1, S3, 1).
2 : pick(Lef t, L1), placeOn(Right, S1, 1, S2, 1).
3 : placeOn(Lef t, L1, 1, S1, 1).

Scenario 19 (Fig. B.45)
The construction problem in Fig. B.45 aims to maximize the height of block L1 in a stack. There are 4 blocks in the stack.

Here, there exist two unit spaces available on the right side, as opposed to only one unit space in the previous benchmarks.
Once again, there is no requirement that the two sides should be connected. Initial state and the computed goal state are
given in Fig. B.45.

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
45

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
Fig. B.45. Scenario 19 – Maximizing the height of block L1 in a stack of 4 blocks.

Fig. B.46. Scenario 20 – Minimizing the height of block S3 in a stack of 8 blocks.

Fig. B.47. Scenario 21 – Minimizing the height of block L2 in a stack of 7 blocks.

1 : placeOn(Lef t, S1, 1, Right Side, 1), placeOn(Right, S2, 1, Right Side, 2).
2 : pick(Lef t, L1).
3 : placeOn(Lef t, L1, 2, S1, 1).

Scenario 20 (Fig. B.46)
This construction problem in Fig. B.46 aims to minimize the height of block S3 in a stack. There are total 8 blocks in the

stack. Please note that, in the problem specification its is required that S3 is part of the stack, that is, it cannot be placed
directly on the ground/table. Initially, all the boxes are on the table.

A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
1 : placeOn(Lef t, S1, 1, M1, 2), placeOn(Right, S2, 1, M1, 1).
2 : pick(Lef t, S3), pick(Right, M2).
3 : placeOn(Lef t, S3, 1, M1, 3).
4 : placeOn(Right, M2, 1, S1, 1).
5 : pick(Lef t, S5), pick(Right, S4).
6 : placeOn(Lef t, S5, 1, M2, 1), placeOn(Right, S4, 1, M2, 2).
7 : pick(Lef t, M3).
8 : placeOn(Lef t, M3, 2, S5, 1).

Scenario 21 (Fig. B.47)
This construction problem in Fig. B.47 aims to minimize the height of block L2 in a stack. There are total 7 blocks in the

stack. In the problem specification its is required that L2 is part of the stack. Initially, all the boxes are on the table.
A stable final state and a plan are computed as follows:

0 : pick(Lef t, S1), pick(Right, S2).
1 : placeOn(Lef t, S1, 1, L2, 1), placeOn(Right, S2, 1, L2, 4).
2 : pick(Lef t, S3), pick(Right, S4).
46

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
3 : placeOn(Lef t, S3, 1, S1, 1), placeOn(Right, S4, 1, L2, 3).
4 : pick(Lef t, L2).
5 : placeOn(Lef t, L2, 1, L1, 1).

References

[1] A. Akbari, Muhayyuddin, J. Rosell, Knowledge-oriented task and motion planning for multiple mobile robots, J. Exp. Theor. Artif. Intell. 31 (1) (2019)
137–162.

[2] J. Barry, K. Hsiao, L.P. Kaelbling, T. Lozano-Pérez, Manipulation with multiple action types, in: Proc. of ISER, 2013, pp. 531–545.
[3] M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze, N. Blodow, D. Pangercic, Cognition-enabled autonomous robot control for the realization of

home chore task intelligence, Proc. IEEE 100 (8) (2012) 2454–2471.
[4] S. Bernardini, M. Fox, D. Long, C. Piacentini, Boosting search guidance in problems with semantic attachments, in: Proc. of ICAPS, 2017.
[5] L. Beyeler, J.-C. Bazin, E. Whiting, A graph-based approach for discovery of stable deconstruction sequences, in: Proc. of AAG, 2015, pp. 145–157.
[6] M. Blum, A. Griffith, B. Neumann, A stability test for configurations of blocks, Technical report, MIT Artificial Intelligence Laboratory, 1970.
[7] T. Bock, Construction automation and robotics, in: Robotics and Automation in Construction, InTech, 2008.
[8] N. Boneschanscher, H. van der Drift, S.J. Buckley, R.H. Taylor, Subassembly stability, in: Proc. of AAAI, vol. 88, 1988, pp. 780–785.
[9] G. Brewka, T. Eiter, M. Truszczynski, Answer set programming: an introduction to the special issue, AI Mag. 37 (3) (2016) 5–6.

[10] F. Buccafurri, N. Leone, P. Rullo, Enhancing disjunctive datalog by constraints, IEEE Trans. Knowl. Data Eng. 12 (5) (2000) 845–860.
[11] O. Caldiran, K. Haspalamutgil, A. Ok, C. Palaz, E. Erdem, V. Patoglu, Bridging the gap between high-level reasoning and low-level control, in: Proc. of

LPNMR, 2009, pp. 342–354.
[12] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone, F. Ricca, T. Schaub, ASP-Core-2 input language format, https://

www.mat .unical .it /aspcomp2013 /files /ASP-CORE -2 .03c .pdf, 2013.
[13] F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova, A. Tucci, A. Wimmer, Angry-HEX: an artificial player for angry birds

based on declarative knowledge bases, IEEE Trans. Comput. Intell. AI Games 8 (2) (2016) 128–139.
[14] S. Chitta, I.A. Sucan, S. Cousins, Moveit! [ROS topics], IEEE Robot. Autom. Mag. 19 (1) (2012) 18–19.
[15] G. Coruhlu, E. Erdem, V. Patoglu, Explainable robotic plan execution monitoring under partial observability, IEEE Trans. Robot. (2021) 1–21.
[16] A. Cosgun, T. Hermans, V. Emeli, M. Stilman, Push planning for object placement on cluttered table surfaces, in: Proc. of IEEE/RSJ IROS, 2011,

pp. 4627–4632.
[17] N.T. Dantam, Z.K. Kingston, S. Chaudhuri, L.E. Kavraki, Incremental task and motion planning: a constraint-based approach, in: Proc. of RSS, 2016.
[18] N.T. Dantam, Z.K. Kingston, S. Chaudhuri, L.E. Kavraki, An incremental constraint-based framework for task and motion planning. I, J. Robot. Res.

37 (10) (2018).
[19] E.D. Demaine, M.L. Demaine, M. Hoffmann, J. O’Rourke, Pushing blocks is hard, Comput. Geom. 26 (1) (2003) 21–36.
[20] M.R. Dogar, S.S. Srinivasa, A planning framework for non-prehensile manipulation under clutter and uncertainty, Auton. Robots 33 (3) (2012) 217–236.
[21] C. Dornhege, P. Eyerich, T. Keller, S. Trüg, M. Brenner, B. Nebel, Semantic attachments for domain-independent planning systems, in: Proc. of ICAPS,

2009.
[22] S. Edelkamp, J. Hoffmann, PDDL2.2: the language for the classical part of the 4th international planning competition, Technical Report 195, University

of Freiburg, 2004.
[23] T. Eiter, M. Fink, G. Ianni, T. Krennwallner, C. Redl, P. Schüller, A model building framework for answer set programming with external computations,

Theory Pract. Log. Program. 16 (4) (2016) 418–464.
[24] T. Eiter, M. Fink, T. Krennwallner, C. Redl, P. Schüller, Efficient HEX-program evaluation based on unfounded sets, J. Artif. Intell. Res. 49 (2014) 269–321.
[25] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, dlvhex: a system for integrating multiple semantics in an answer-set programming framework, in:

Workshop on Logic Programming and Constraint Systems, 2006, pp. 206–210.
[26] E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, AI Mag. 37 (3) (2016) 53–68.
[27] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, T. Uras, Combining high-level causal reasoning with low-level geometric reasoning and motion

planning for robotic manipulation, in: Proc. of IEEE ICRA, 2011, pp. 4575–4581.
[28] E. Erdem, V. Lifschitz, Transformations of logic programs related to causality and planning, in: Proc. of LPNMR, 1999, pp. 107–116.
[29] E. Erdem, V. Lifschitz, Tight logic programs, Theory Pract. Log. Program. 3 (4–5) (2003) 499–518.
[30] E. Erdem, V. Patoglu, Applications of ASP in robotics, Künstl. Intell. 32 (2–3) (2018) 143–149.
[31] E. Erdem, V. Patoglu, P. Schüller, A systematic analysis of levels of integration between high-level task planning and low-level feasibility checks, AI

Commun. 29 (2) (2016) 319–349.
[32] C. Erdogan, M. Stilman, Planning in constraint space: automated design of functional structures, in: Proc. of IEEE ICRA, 2013.
[33] S.T. Erdogan, V. Lifschitz, Definitions in answer set programming, in: Proc. of LPNMR, 2004, pp. 114–126.
[34] W. Faber, G. Pfeifer, N. Leone, Semantics and complexity of recursive aggregates in answer set programming, Artif. Intell. 175 (1) (2011) 278–298.
[35] R. Fagin, Monadic generalized spectra, Math. Log. Q. 21 (1) (1975) 89–96.
[36] S.E. Fahlman, A planning system for robot construction tasks, Artif. Intell. 5 (1) (1974) 1–49.
[37] L. Ferreira, C. Toledo, Generating levels for physics-based puzzle games with estimation of distribution algorithms, in: Proc. of ACM ACE, 2014, p. 25.
[38] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler, R. Siegwart, M. Hutter, Autonomous robotic stone stacking with online next best object

target pose planning, in: Proc. of IEEE ICRA, 2017, pp. 2350–2356.
[39] A. Gaschler, R.P.A. Petrick, M. Giuliani, M. Rickert, A. Knoll, KVP: a knowledge of volumes approach to robot task planning, in: Proc. of IEEE/RSJ IROS,

2013, pp. 202–208.
[40] A. Gaschler, R.P.A. Petrick, O. Khatib, A. Knoll, KABouM: knowledge-level action and bounding geometry motion planner, J. Artif. Intell. Res. 61 (2018)

323–362.
[41] M. Gelfond, V. Lifschitz, Classical negation in logic programs and disjunctive databases, New Gener. Comput. 9 (1991) 365–385.
[42] M. Gelfond, V. Lifschitz, Action languages, Electron. Trans. Artif. Intell. 2 (1998) 193–210.
[43] A. Gerevini, P. Haslum, D. Long, A. Saetti, Y. Dimopoulos, Deterministic planning in the fifth international planning competition: PDDL3 and experi-

mental evaluation of the planners, Artif. Intell. 173 (5) (2009) 619–668.
[44] E. Giunchiglia, J. Lee, V. Lifschitz, N. McCain, H. Turner, Nonmonotonic causal theories, Artif. Intell. 153 (1–2) (2004) 49–104.
[45] F. Gravot, S. Cambon, R. Alami, aSyMov: a planner that deals with intricate symbolic and geometric problems, in: Proc. of ISRR, 2003, pp. 100–110.
[46] N. Gupta, D.S. Nau, On the complexity of blocks-world planning, Artif. Intell. 56 (2–3) (1992) 223–254.
[47] J.F. Hall, Fun with stacking blocks, Am. J. Phys. 73 (12) (2005) 1107–1116.
[48] S.D. Han, N.M. Stiffler, K.E. Bekris, J. Yu, Autonomous design of functional structures, Adv. Robot. 29 (9) (2015) 625–638.
[49] S.D. Han, N.M. Stiffler, K.E. Bekris, J. Yu, Efficient, high-quality stack rearrangement, IEEE Robot. Autom. Lett. 3 (3) (2018) 1608–1615.
[50] P. Haslum, F. Ivankovic, M. Ramírez, D. Gordon, S. Thiébaux, V. Shivashankar, D.S. Nau, Extending classical planning with state constraints: heuristics

and search for optimal planning, J. Artif. Intell. Res. 62 (2018) 373–431.
47

http://refhub.elsevier.com/S0004-3702(23)00048-6/bib03FF85C5D4A9B8AEA609BE3662CA4A54s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib03FF85C5D4A9B8AEA609BE3662CA4A54s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF0FE925495A62F557EF8AF4A9C645C5Bs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibDFED2EB239B3C5F7F5AA94BD559163DDs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibDFED2EB239B3C5F7F5AA94BD559163DDs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib940008AB169289B401FD36E345C6482Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC76499E14421280AAC01F20A1A20D50Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib1A74EA18DCC3D17917309DD24F4DBB76s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib9D872E21A847260D122D60216E2E1D6Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib9B0591DFE8410F6C2C8646C19CAA1B03s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib33AE758435E15A5FC136F70519DC8EACs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC78897B3A77BF9690419AE9B0C1E7FDAs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC309603A31D38CC403D497B06B6F061Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC309603A31D38CC403D497B06B6F061Ds1
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibFA7C268941F3BE8247C44E0BCB03B2A6s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibFA7C268941F3BE8247C44E0BCB03B2A6s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib130B6296F03DC385387C26887AE08F89s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib66841F72E124A1096E0FEA9CAF9F69D7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5CDD6DCFF1C0845AB75F73A76C1A6822s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5CDD6DCFF1C0845AB75F73A76C1A6822s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2C16D51AC3C6E1B6BBBED62202C91122s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib793309B45D5E63B9FCD8DE596650F2DCs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib793309B45D5E63B9FCD8DE596650F2DCs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib255A164F9C8C132903FED16199B1346Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib0640AED01CA8B9A412C5422B86FDC339s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib851445EFC6AF8C82B4BA7F94641DF6D3s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib851445EFC6AF8C82B4BA7F94641DF6D3s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibA94EFA90B84819B6268147CE68CFFE52s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibA94EFA90B84819B6268147CE68CFFE52s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2C537FDA42ABC659213D28F9CBCCD461s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2C537FDA42ABC659213D28F9CBCCD461s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibE023D634C4EF997D2B13B8E178CBF916s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibCF76E152B813491B550667343D9D55B7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibCF76E152B813491B550667343D9D55B7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibDC52A4D6F5D300662C7F8B1904941964s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5519CE80A2C0B8F271D1B35555EEB0E7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5519CE80A2C0B8F271D1B35555EEB0E7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC5F26AE5EBAF72926BE908E92255C1B5s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib1559F42D15AD449772CD6546CA9C4CB1s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibB401EFE627A802F92E84A8906916845Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib653EACA9B954D203CADDFA035D9ADAB8s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib653EACA9B954D203CADDFA035D9ADAB8s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7EB991AE2D6CE4D084E36D44122C7456s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibDF167CC9A3CCCE30C68EBA48C5F43D3Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib04F903F7BEAD2B5FFC27A40365D0599Fs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7E60C5CB726A3E70353364F916F1333Fs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib3B564903F38268DDCB5340089E25C642s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF8688FD52D33ADCF89E29BDB36E645E4s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibEC09FA5CDF41A4F992569BFFEB534E5Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibEC09FA5CDF41A4F992569BFFEB534E5Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib4C7C47CC0966C861565150FE70480499s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib4C7C47CC0966C861565150FE70480499s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib33FAA1231892A863ACFB19EFCC292E23s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib33FAA1231892A863ACFB19EFCC292E23s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib16E63D1DC5B436E3D3A93BAA425F56E4s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib208C96BAF4ADDA0028785AFF01890ABCs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib68E79025C30BD6CF2928C706AF3E2670s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib68E79025C30BD6CF2928C706AF3E2670s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib8AC175C9707C105020048BC144674CE3s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2A2EC6E6627DC04C8D6A6EBC81DBAB4Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7D0926B9C827D2A7E11B0830EFAB2C86s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7499889C03F3C06E8EF19D6C72045822s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib455EB023894712730B5AB2E0C114DA57s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib556D18A417EDB65FF1B2CF470820CED9s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7B26E3CAB9D2521ABF6936021F1F2527s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7B26E3CAB9D2521ABF6936021F1F2527s1

F. Ahmad, V. Patoglu and E. Erdem Artificial Intelligence 319 (2023) 103902
[51] K. Hauser, J.-C. Latombe, Integrating task and PRM motion planning: dealing with many infeasible motion planning queries, in: Workshop on Bridging
the Gap Between Task and Motion Planning at ICAPS, 2009.

[52] G. Havur, G. Ozbilgin, E. Erdem, V. Patoglu, Geometric rearrangement of multiple movable objects on cluttered surfaces: a hybrid reasoning approach,
in: Proc. of IEEE ICRA, 2014, pp. 445–452.

[53] A. Hertle, C. Dornhege, T. Keller, B. Nebel, Planning with semantic attachments: an object-oriented view, in: Proc. of ECAI, 2012, pp. 402–407.
[54] Z. Jia, A.C. Gallagher, A. Saxena, T. Chen, 3d reasoning from blocks to stability, IEEE Trans. Pattern Anal. Mach. Intell. 37 (5) (2015) 905–918.
[55] L.P. Kaelbling, T. Lozano-Pérez, Integrated task and motion planning in belief space. I, J. Robot. Res. 32 (9–10) (2013) 1194–1227.
[56] N.P. Koenig, A. Howard, Design and use paradigms for Gazebo, an open-source multi-robot simulator, in: Proc. of IEEE/RSJ IROS, 2004, pp. 2149–2154.
[57] A. Krontiris, K.E. Bekris, Dealing with difficult instances of object rearrangement, in: Proc. of RSS, 2015.
[58] A. Krontiris, K.E. Bekris, Efficiently solving general rearrangement tasks: a fast extension primitive for an incremental sampling-based planner, in:

Proc. of IEEE ICRA, 2016, pp. 3924–3931.
[59] A. Krontiris, R. Shome, A. Dobson, A. Kimmel, K. Bekris, Rearranging similar objects with a manipulator using pebble graphs, in: Proc. of IEEE-RAS

Humanoids, 2014, pp. 1081–1087.
[60] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, L. Karlsson, Efficiently combining task and motion planning using geometric constraints. I, J. Robot. Res.

33 (14) (2014) 1726–1747.
[61] S.M. LaValle, Planning Algorithms, Cambridge University Press, 2006.
[62] S. Lee, Y.G. Shin, Assembly planning based on geometric reasoning, Comput. Graph. 14 (2) (1990) 237–250.
[63] R.K. Livesley, Limit analysis of structures formed from rigid blocks, Int. J. Numer. Methods Eng. 12 (12) (1978) 1853–1871.
[64] R.K. Livesley, A computational model for the limit analysis of three-dimensional masonry structures, Meccanica 27 (3) (1992) 161–172.
[65] M.C. Magnaguagno, F. Meneguzzi, Semantic attachments for HTN planning, in: Proc. of AAAI, 2020, pp. 9933–9940.
[66] R. Mattikalli, D. Baraff, P. Khosla, Finding all stable orientations of assemblies with friction, IEEE Trans. Robot. Autom. 12 (2) (1996) 290–301.
[67] J. McCarthy, Elaboration tolerance, in: Working Papers of the Fourth International Symposium on Logical Formalizations of Commonsense Reasoning,

1998.
[68] D. McDermott, G. Sussman, The Conniver Reference Manual, MIT AI Memo, vol. 259, 1972.
[69] R. Mojtahedzadeh, A. Bouguerra, E. Schaffernicht, A.J. Lilienthal, Support relation analysis and decision making for safe robotic manipulation tasks,

Robot. Auton. Syst. 71 (2015) 99–117.
[70] N. Napp, R. Nagpal, Distributed amorphous ramp construction in unstructured environments, Robotica 32 (2) (2014) 279–290.
[71] A. Nouman, V. Patoglu, E. Erdem, Hybrid conditional planning for robotic applications, Int. J. Robot. Res. 40 (2–3) (2021) 594–623.
[72] K. Okada, A. Haneda, H. Nakai, M. Inaba, H. Inoue, Environment manipulation planner for humanoid robots using task graph that generates action

sequence, in: Proc. of IEEE/RSJ IROS, vol. 2, 2004, pp. 1174–1179.
[73] R.S. Palmer, Computational complexity of motion and stability of polygons, Technical report, Cornell University, 1989.
[74] J.-S. Pang, J. Trinkle, Stability characterizations of rigid body contact problems with Coulomb friction, J. Appl. Math. Mech. (Z. Angew. Math. Mech.)

80 (10) (2000) 643–663.
[75] M. Paterson, Y. Peres, M. Thorup, P. Winkler, U. Zwick, Maximum overhang, Am. Math. Mon. 116 (9) (2009) 763–787.
[76] M. Paterson, U. Zwick, Overhang, in: ACM-SIAM Symposium on Discrete Algorithm, 2006, pp. 231–240.
[77] M. Paterson, U. Zwick, Overhang, Am. Math. Mon. 116 (1) (2009) 19–44.
[78] E. Plaku, Planning in discrete and continuous spaces: from LTL tasks to robot motions, in: Joint Proc. of TAROS and FIRA RoboWorld, 2012,

pp. 331–342.
[79] M. Rizwan, V. Patoglu, E. Erdem, Human robot collaborative assembly planning: an answer set programming approach, Theory Pract. Log. Program.

20 (6) (2020) 1006–1020.
[80] F. Röhrdanz, H. Mosemann, F. Wahl, Generating and evaluating stable assembly sequences, Adv. Robot. 11 (2) (1996) 97–126.
[81] Z.G. Saribatur, V. Patoglu, E. Erdem, Finding optimal feasible global plans for multiple teams of heterogeneous robots using hybrid reasoning: an

application to cognitive factories, Auton. Robots 43 (2019) 213–238.
[82] J.M. Schimmels, M.A. Peshkin, Force-assembly with friction, IEEE Trans. Robot. Autom. 10 (4) (1994) 465–479.
[83] B. Schmult, Autonomous robotic disassembly in the blocks world, Int. J. Robot. Res. 11 (5) (1992) 437–459.
[84] P.D. Spanos, P.C. Roussis, N.P. Politis, Dynamic analysis of stacked rigid blocks, Soil Dyn. Earthq. Eng. 21 (7) (2001) 559–578.
[85] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S.J. Russell, P. Abbeel, Combined task and motion planning through an extensible planner-independent

interface layer, in: Proc. of IEEE ICRA, 2014, pp. 639–646.
[86] M. Stephenson, J. Renz, Procedural generation of complex stable structures for angry birds levels, in: Proc. IEEE CIG, 2016, pp. 1–8.
[87] M. Stilman, J. Kuffner, Planning among movable obstacles with artificial constraints, Int. J. Robot. Res. 27 (11–12) (2008) 1295–1307.
[88] M. Stilman, J.J. Kuffner, Navigation among movable obstacles: real-time reasoning in complex environments, Int. J. Humanoid Robot. 2 (04) (2005)

479–503.
[89] M. Stilman, J.-U. Schamburek, J. Kuffner, T. Asfour, Manipulation planning among movable obstacles, in: Proc. of IEEE ICRA, 2007, pp. 3327–3332.
[90] I.A. Sucan, M. Moll, L.E. Kavraki, The open motion planning library, IEEE Robot. Autom. Mag. 19 (4) (2012) 72–82.
[91] G.J. Sussman, D.V. McDermott, From planner to conniver: a genetic approach, in: Proc. of ACM Fall Joint Computer Conference, Part II, 1972,

pp. 1171–1179.
[92] V. Thangavelu, Y. Liu, M. Saboia, N. Napp, Dry stacking for automated construction with irregular objects, in: Artif. Intell., 2018.
[93] S. Thiébaux, J. Hoffmann, B. Nebel, In defense of PDDL axioms, Artif. Intell. 168 (1–2) (2005) 38–69.
[94] A. Thomas, S. Amatya, F. Mastrogiovanni, M. Baglietto, Task-assisted motion planning in partially observable domains, CoRR, arXiv:1908 .10227, 2019.
[95] M. Toussaint, Logic-geometric programming: an optimization-based approach to combined task and motion planning, in: Proc. of IJCAI, 2015,

pp. 1930–1936.
[96] M. Toussaint, M. Lopes, Multi-bound tree search for logic-geometric programming in cooperative manipulation domains, in: Proc. of IEEE ICRA, 2017,

pp. 4044–4051.
[97] P.A. Wałega, M. Zawidzki, T. Lechowski, Qualitative physics in angry birds, IEEE Trans. Comput. Intell. AI Games 8 (2) (2016) 152–165.
[98] W. Wan, K. Harada, K. Nagata, Assembly sequence planning for motion planning, Assem. Autom. 38 (2) (2018) 195–206.
[99] J. Wang, P. Rogers, L. Parker, D. Brooks, M. Stilman, Robot jenga: autonomous and strategic block extraction, in: Proc. of IEEE/RSJ IROS, 2009,

pp. 5248–5253.
[100] R.W. Weyhrauch, Prolegomena to a theory of formal reasoning, Technical report, Stanford University, 1978.
[101] R.W. Weyhrauch, Prolegomena to a theory of mechanized formal reasoning, Artif. Intell. 13 (1–2) (1980) 133–170.
[102] E.J.W. Whiting, Design of structurally-sound masonry buildings using 3D static analysis, PhD thesis, Massachusetts Institute of Technology, 2012.
[103] G. Wilfong, Motion planning in the presence of movable obstacles, in: Proc. of SCG, 1988, pp. 279–288.
[104] R.H. Wilson, J.-C. Latombe, Geometric reasoning about mechanical assembly, Artif. Intell. 71 (2) (1994) 371–396.
[105] T. Winograd, Understanding natural language, Cogn. Psychol. 3 (1) (1972) 1–191.
[106] U. Zwick, Jenga, in: Proc. of ACM SIAM SODA, 2002, pp. 243–246.
48

http://refhub.elsevier.com/S0004-3702(23)00048-6/bibAED46D4752C112ECFE55B2D5EA4182E0s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibAED46D4752C112ECFE55B2D5EA4182E0s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib3E5C84C361AAA9D7BEFFCB2CF2952F01s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib3E5C84C361AAA9D7BEFFCB2CF2952F01s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibD0A8921BC039C4E153BA09CB6BF38C27s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibE55613E5ABA2BA48DC4DF9E825ACF5B3s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib62A0A1E24F1733D2CDB30934EB1A4E36s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC6B45771B6687D1EB982FAC8F737D0BDs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib3A81FB9895CD2FD117595CD960DC3391s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib54E4717871C56483F60C01EA8DCE679Es1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib54E4717871C56483F60C01EA8DCE679Es1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibB61FFFFA81540503784511C72EB63EDAs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibB61FFFFA81540503784511C72EB63EDAs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC1C94B8E5E29596EFFCC272C16AC9A39s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC1C94B8E5E29596EFFCC272C16AC9A39s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib8A36B40CA2D29669E59D39A741C76265s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib813FAAACE707BB94BCCCE49BBBF8BA9Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib690F75E93726986B86D0F6DE1DA57829s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib75DB2A10A3599FEB7E88353B84CE7970s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib16CEE9079B41752F6E680F785C46D9ABs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib7BC86EC9D114A92C7CB04D1FC4203943s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib52F64E2EC7D5359F24F4A9C62DF58561s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib52F64E2EC7D5359F24F4A9C62DF58561s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibEEDAC7E73DE6767701AFABFC9AE0B741s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib06798CC4BC6A19DC88F4E34D3FEA6BF7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib06798CC4BC6A19DC88F4E34D3FEA6BF7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib12605314631EB44C8DA6CF074545A62Es1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib88BD97B5C5699D94CCEDF801AA0DB185s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF8E0D07ED6357E5885391F189E3B3C8As1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF8E0D07ED6357E5885391F189E3B3C8As1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibA151181E13394C39F8AF9EDA3036CE96s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibBD94B4CA7267E59E55D61BAB2C08471Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibBD94B4CA7267E59E55D61BAB2C08471Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF3EA9CA141BB5925EE3E67F58C6B8E47s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib9AC2464A206914EC980D0B7816158B09s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibC229AD586DC54AEF4C726FF84459EB9Fs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib994A6E36F44863E72661D62F83089A45s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib994A6E36F44863E72661D62F83089A45s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibD0AF9FA6AB7DAB83CAA8C1A08C2163F0s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibD0AF9FA6AB7DAB83CAA8C1A08C2163F0s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib9BCB8A6478CC1FAB67DC22761524E57Fs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib84E822915A19FB2208C003BA1DA2ED8Bs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib84E822915A19FB2208C003BA1DA2ED8Bs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib3E8B90C7BAFCA121F75D35A577F32115s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib46AF4DB508146CEE467C6E1A0D2F570Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2EC4E314CFA88ACBAD4997A14FCEF7F4s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib26F9C75E6798EE9A66E5188B2C965A2Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib26F9C75E6798EE9A66E5188B2C965A2Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib32CF8BED236E6264AB314EFDFA61FAAAs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF1823A3BFA2FBAAB256AB292597F07B8s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF1F9FABAA8D5D30063553E73A895E427s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF1F9FABAA8D5D30063553E73A895E427s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibDE6C541B7C267C4C6E60962E6F7E638Bs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib6CD15A292E95FFC5F7FBCD93C2CB9E02s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib1D6D2C7D082CE33160F9A34A84060449s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib1D6D2C7D082CE33160F9A34A84060449s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib07ECEBC6C2240F0846068FEFF2A6FB4Ds1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib4B801DF0CC21788E66C1868A0EA7C7EDs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib0FAB8B887CD35105718AC7BD5D3895F9s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5B88594C07F1AA7989FCFEE860CE5592s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5B88594C07F1AA7989FCFEE860CE5592s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2A048D6FE55556B16997249D2423A7FCs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2A048D6FE55556B16997249D2423A7FCs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib5D11B6735DE6BA58D59FE359D9770E4As1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib33F03D2D2BA9E5CDF0EC9CD4ACA41877s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib87F22205292DE792A1F16CC321804AB9s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib87F22205292DE792A1F16CC321804AB9s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibAF763A94A0EF841CD4D1C024659800CCs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib2624E47B40D7CC2125790D9DBABD1BB7s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bibF759229FD80C3B0CCD1EEF8CD9E7F129s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib261F2F94074886AE6713DF1F38416F89s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib998E9B397736A495E2D6F00A9DFF230Cs1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib679B5E099A7AA2FA773FB94615D5FBA5s1
http://refhub.elsevier.com/S0004-3702(23)00048-6/bib3D8EFC6696772F9C62A62D9AF19FB201s1

	An Answer Set Programming approach
	1 Introduction
	1.1 Motivating challenges
	1.2 Our contributions
	1.3 Organization of the manuscript

	2 Robot construction problems
	3 Illustrative examples
	4 Modeling robot construction problems
	4.1 Formulas in ASP
	4.2 Fluents and actions
	4.3 Ramifications
	4.4 Supportedness constraints
	4.5 Constraints about occurrences of action
	4.6 Stability constraints
	4.7 Bridges and overhangs
	4.8 Maximizing/minimizing the heights of stacks
	4.9 Soundness and completeness

	5 Importance of feasibility check and hybrid planning for construction problems
	6 Benchmark instances and experimental evaluation
	7 Solving robot construction problems with hybrid planning: implementation and execution
	7.1 Dynamic simulation
	7.2 Execution

	8 Related work
	9 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proofs
	A.1 Transitive closure in ASP
	A.2 Equivalent transformations in ASP
	A.3 Definitions and constraints in ASP
	A.4 Defining reachability in ASP
	A.5 Proof of Proposition 1
	A.6 Proof of Proposition 2
	A.7 Proof of Proposition 3
	A.8 Proof of Proposition 4
	A.9 Proof of Proposition 5
	A.10 Proof of Proposition 6
	A.11 Proof of Proposition 7
	A.12 Proof of Proposition 8

	Appendix B Benchmark instances for construction problems and their solutions
	B.1 Sub-assembly manipulation
	B.2 Disassembly
	B.3 Counter weights
	B.4 Temporary scaffolding
	B.5 True concurrency of actions
	B.6 Ramifications of actions
	B.7 Overhang scenarios
	B.8 Symmetric bridge scenarios
	B.9 Asymmetric bridge scenarios
	B.10 Tower stacking

	References

