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Abstract— Robotic systems often face execution failures
due to unexpected obstacles, sensor errors, or environmental
changes. Traditional failure recovery methods rely on prede-
fined strategies or human intervention, making them less adapt-
able. This paper presents a unified failure recovery framework
that combines Vision-Language Models (VLMs), a reactive
planner, and Behavior Trees (BTs) to enable real-time failure
handling. Our approach includes pre-execution verification,
which checks for potential failures before execution, and reac-
tive failure handling, which detects and corrects failures during
execution by verifying existing BT conditions, adding missing
preconditions and, when necessary, generating new skills. The
framework uses a scene graph for structured environmental
perception and an execution history for continuous monitoring,
enabling context-aware and adaptive failure handling. We
evaluate our framework through real-world experiments with
an ABB YuMi robot on tasks like peg insertion, object sorting,
and drawer placement, as well as in AI2-THOR simulator. Com-
pared to using pre-execution and reactive methods separately,
our approach achieves higher task success rates and greater
adaptability. Ablation studies highlight the importance of VLM-
based reasoning, structured scene representation, and execution
history tracking for effective failure recovery in robotics.

I. INTRODUCTION

Modern robotic systems excel in controlled environ-

ments, but struggle with dynamic environments such as

small batch manufacturing, particularly in handling execution

failures [1]. Failures such as unexpected obstacles, sen-

sor inaccuracies, or misaligned objects disrupt operations,

causing costly delays [2]. Unlike repetitive, pre-planned

tasks in large-scale production, small batch manufacturing

demands adaptability to frequent task variations. Similarly,

in collaborative assembly lines, where robots work along-

side humans, real time failure handling is crucial for safe

and efficient execution [3]. Developing autonomous failure

recovery mechanisms that enable robots to detect, identify,

and correct failures without human intervention is essential

for improving reliability and reducing downtime [4].

To address these challenges, failure recovery methods

range from learning based approaches that rely on data

driven policies to structured execution frameworks designed

for modular and interpretable decision making. Many learn-

ing based methods employ end-to-end architectures where

robotic control policies are trained directly from data [5],

[6]. While effective across diverse tasks, these methods

often lack interpretability and verifiability, making them
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Fig. 1. Overview of our approach, which consists of two phases: pre-
execution verification and real-time monitoring. The pre-execution phase
verifies the entire planned BT proactively using a VLM based on inputs (im-
ages, scene graphs, skills, and conditions). The real-time phase continuously
monitors execution, where the VLM verifies preconditions, postconditions,
and infers missing preconditions for individual skills using updated inputs
and execution history. A reactive planner dynamically generates and adapts
the BT as the robot’s execution policy.

unsuitable for safety critical domains requiring robust, failure

resistant execution especially in high stakes environments

where errors can damage expensive equipment or disrupt

operations.

Structured execution frameworks, such as Behavior Trees

(BTs) [7], provide a modular framework for verification,

adaptation, and efficient failure recovery. They define ex-

ecution policies as hierarchical compositions of reusable

skills [8], enabling fine-grained monitoring while ensur-

ing compliance with safety standards [9]. Their modularity

supports incremental recovery, avoiding the computational

cost of full replanning [10]. While BTs can be manually

designed, reactive planners automate their generation using

a backchaining approach that selects skills based on pre-

conditions and postconditions [11]. This allows robots to

construct reactive execution policies that adapt to unexpected

conditions in real-time without requiring full replanning.

In our prior work [12], we introduced a failure recov-

ery framework that used a Vision-Language Model (VLM)

for pre-execution plan verification. The system analyzed



input skills, execution conditions, the planned BT, and

pre-execution images to assess whether the plan contained

sufficient knowledge for successful execution. If critical

preconditions or required skills were missing, it suggested

modifications to prevent execution errors, reducing failures

caused by incomplete task knowledge. However, this ap-

proach did not account for failures arising during execution

due to unforeseen disturbances, environmental changes, or

hardware errors.

While pre-execution verification helps prevent many fail-

ures, it cannot predict all possible execution-time issues.

A robot may generate a valid pick-and-place plan, yet

unexpected events, such as human intervention or object

displacement, can still cause grasp failures. Addressing such

failures requires real-time monitoring and corrective actions,

which is only possible through a reactive mechanism. With-

out continuous failure monitoring, robots cannot effectively

detect and adapt to failures as they occur, making reactive

checks essential for robust autonomous execution.

Building on our prior work [12], this paper presents a uni-

fied failure recovery framework that extends pre-execution

plan verification with real-time execution monitoring (Fig-

ure 1) to detect, identify, and correct errors dynamically.

Our framework integrates reactive failure handling using

a continuously updated execution history, which records

skill execution states, timestamps, and scene graph updates

for adaptive failure recovery. To improve situational aware-

ness, we incorporate scene graphs that track object-object

and robot-object spatial relationships throughout execution.

Unlike [13], which generates scene graphs post-execution,

our method updates them continuously, enabling immediate

detection of environmental changes. Additionally, while [12]

suggested missing skills only pre-execution, our approach

supports both pre-execution and reactive skill suggestions,

ensuring failures are addressed proactively and dynamically.

This work makes the following key contributions:

• A unified failure recovery framework integrating Vision-

Language Models (VLMs), reactive planners, and Be-

havior Trees (BTs) for pre-execution failure verification

and real-time reactive failure handling.

• Real-time failure detection, identification, and correc-

tion using an incrementally updated execution history

that tracks skill conditions, execution timestamps, and

scene graph updates.

• Experimental validation in AI2-THOR [14] and a real-

world ABB YuMi robot, demonstrating improved failure

recovery across diverse environments.

II. RELATED WORK

Failure recovery in robotics has been extensively studied,

from predefined strategies to modern learning-based tech-

niques and Large Language Models (LLMs) for adaptive

failure handling. This section reviews these methodologies

and highlights the distinctions between existing works and

our approach.

A. Traditional Failure Recovery Strategies

Early methods relied on human intervention, predefined

recovery strategies, and automated solutions based on fail-

ure mode analysis. While human-in-the-loop strategies offer

flexibility, they are labor-intensive and limit scalability [15].

Predefined strategies handle known failure cases well but

struggle with novel issues [16]. Systematic failure analy-

sis, such as Failure Mode and Effects Analysis (FMEA),

requires expert knowledge and does not generalize to dy-

namic environments [17]. Automated recovery methods at-

tempt autonomy but remain constrained by predefined failure

modes [18], [19]. Unlike these approaches, our framework

continuously updates a dynamic execution history for real-

time failure detection and adaptation.

B. Learning-Based Failure Recovery

Recent approaches explore reinforcement learning (RL)

and imitation learning (IL) to develop recovery strategies

from experience [5], [6]. RL-based methods require exten-

sive training in simulations, making real-world deployment

difficult [20]. IL-based methods like RACER [21] improve

recovery using demonstrations but struggle to generalize.

Neuro-symbolic methods combine structured reasoning with

learning, improving interpretability but facing scalability

challenges [22], [23], [24]. Our approach avoids data-heavy

training by leveraging Vision-Language Models (VLMs)

for reasoning-based failure recovery, enabling flexible and

context-aware corrections in real time.

C. Failure Recovery with Large Language Models (LLMs)

and Vision-Language Models (VLMs)

LLMs and VLMs have become integral to robotic fail-

ure recovery due to their reasoning capabilities. Several

approaches leverage LLM-based reasoning for failure detec-

tion and correction, including REFLECT [25], AHA [20],

DoReMi [26], ReplanVLM [27], RECOVER [22], and

Code-as-Monitor [28]. REFLECT provides hierarchical post-

execution summaries but lacks real-time intervention. AHA

fine-tunes a VLM for failure detection at task checkpoints

but lacks structured execution policies. DoReMi enforces

dynamic execution constraints but relies on LLM-generated

constraints, introducing variability. ReplanVLM integrates

pre-execution validation with execution monitoring using

GPT-4V but depends on LLM-driven re-planning rather than

structured failure handling.

Unlike these, our framework integrates a reactive plan-

ner and Behavior Trees (BTs) for structured, real-time

failure handling at both pre-execution and reactive lev-

els. RECOVER[22] uses ontology-driven neuro-symbolic

reasoning for real-time failure detection but requires

domain-specific engineering, limiting adaptability. Code-as-

Monitor[28] translates natural language constraints into ex-

ecutable monitors for proactive (handling foreseeable fail-

ures) and reactive failure detection but lacks explicit re-

covery mechanisms. Unlike these, our execution history

continuously updates skill execution states, enabling VLMs

to analyze failures dynamically rather than post-execution.



Compared to AHA and ReplanVLM, which focus on high-

level reasoning or planning corrections, our approach en-

sures modular and adaptive failure recovery by integrating

structured execution policies via BTs and a reactive planner.

Additionally, recent work [29] explores intent-based BT

planning using LLMs for goal interpretation, whereas our

method actively modifies execution policies by suggesting

missing preconditions, postconditions, and skills in real time,

ensuring robust failure recovery in dynamic environments.

III. BACKGROUND

In this section, we discuss the relevant concepts that serve

as background knowledge for the paper.

A. Behavior Trees

Behavior Trees (BTs) are a hierarchical execution model

valued for their modularity, flexibility, and reactivity in

robotic decision-making [30], [31]. Originally developed

for game AI, BTs now provide interpretable and scalable

task execution in robotics [9], [7]. Their structure simplifies

behavior design, modification, and debugging while enabling

real-time adaptation to dynamic environments [32].

A BT is a directed acyclic graph where execution begins

at the root node, propagating tick signals to evaluate and exe-

cute behaviors dynamically. Nodes return Success, Failure, or

Running, with control-flow nodes (e.g., Sequence, Fallback)

managing execution order and execution nodes (e.g., action,

condition) implementing robot skills. This structured execu-

tion enables task decomposition and fine-grained monitoring.

Once adapted to handle a failure, the BT becomes a reusable

execution policy, reducing reliance on model queries and

improving efficiency over time.

B. Reactive Planner

Reactive planners generate Behavior Trees (BTs) dynam-

ically using backchaining, selecting skills that satisfy goal

conditions [33]. Starting from the goal, the planner works

backward through skill preconditions and postconditions,

iteratively expanding the BT until all conditions are met

or a termination criterion is reached. This approach en-

ables robots to adapt to environmental changes without full

re-planning, leveraging BT modularity for flexible execu-

tion [11]. The PDDL-based reactive planner used in this

work follows [11], ensuring efficiency by removing redun-

dant nodes and introducing composite subtrees for complex

tasks. This facilitates real-time, autonomous failure recovery

while maintaining computational efficiency. As backchaining

inherently selects skills that achieve required postconditions,

explicit VLM-generated postcondition suggestions are un-

necessary.

C. Vision-Language Models

Vision-Language Models (VLMs) combine visual percep-

tion with language-based reasoning, making them effective

for robotic failure recovery [22], [21]. They enable robots to

detect, identify, and correct failures by analyzing execution

conditions and task states.

In our prior work [12], GPT-4o was used for pre-execution

verification, where the VLM assessed if a planned execution

contained sufficient knowledge to succeed. It performed

three key tasks: failure detection (checking for potential

failures based on available conditions), failure identification

(diagnosing root causes by analyzing missing or incorrect

preconditions), and failure correction (suggesting modifi-

cations such as adding missing preconditions or required

skills). This approach reduced failures due to incomplete task

knowledge but did not address execution-time failures from

unforeseen disturbances or environmental changes.

This work extends VLMs to real-time execution monitor-

ing and correction. The VLM continuously analyzes execu-

tion states, providing corrective suggestions based on evolv-

ing conditions. To improve reasoning, we integrate scene

graphs that dynamically track object-object and robot-object

relationships, improving failure detection. Additionally, an

execution history records skill preconditions, postconditions,

and execution timestamps, enabling structured failure anal-

ysis. By combining pre-execution checks with reactive real-

time monitoring, our framework ensures continuous adapta-

tion to failures, enhancing robustness in autonomous robotic

execution.

IV. APPROACH

To enable real-time robotic failure recovery, our frame-

work integrates a reactive planner, Behavior Trees (BT), and

Vision Language Models (VLM). The failure monitoring

process is divided into pre-execution failure verification

and real-time execution monitoring, each addressing failure

detection, identification, and correction. Additionally, we

extend the system with a scene graph and execution history

to improve failure reasoning and adaptation. All failure

handling mechanisms rely on the following key inputs:

• Images capturing the scene from multiple angles using

two cameras (front and side views) to improve spatial

understanding.

• Skills with predefined pre- and postconditions.

• Known conditions for environment reasoning.

• Scene graph representing spatial object relations.

• Behavior Tree (BT) defining execution policy.

• Execution history (real-time only) tracking past actions

and scene updates.

Failure handling follows a three-phase process: detection

identifies potential failures, identification determines the root

cause by pinpointing the affected skill and unmet condi-

tion, and correction modifies the BT through precondition

adjustments or skill additions to ensure successful execution.

inspired by chain-of-thought [34] reasoning, we structure

failure recovery prompt into these three phases. This im-

proves the VLM performance by guiding it step-by-step

toward the correct solution. If no failure is detected during

the detection phase, the system skips the identification and

correction steps, optimizing computational efficiency in both

pre-execution and real-time monitoring.

To explain concretely our failure handling process, we

use a peg-in-hole task, where the goal is to insert the



Q: Is the plan correct with no potential failures?
A: No, the plan has a potential failure.
Q: Which skill will fail and why?
A: Place skill will fail because the hole is blocked by
     a black object
Q: Which condition should be added to avoid failure?
A: Add ~occupied(hole) as precondition for place skill.

(a)

Q: Are the preconditions of the grasp skill satisfied?
A: No, they are not satisfied.
Q: Which preconditions are not satisfied and why?
A: ~grasped(any object) is not satisfied as gripper is holding
     red object
Q: Should BT condition node return Success or Failure?
A: ~grasped(any object) node should return Failure

(b)

Q: Are the postconditions of the place skill satisfied?
A: No, they are not satisfied.
Q: Which postconditions are not satisfied and why?
A: inside(blue object, green object) is not satisfied as blue
     object is on green object
Q: Should BT condition node return Success or Failure?
A: inside(blue object, green object) node should return Failure

(c)

Fig. 2. Three failure instances with corresponding VLM responses. (a) Pre-execution verification detects that the black object blocks the hole, and the
VLM suggests adding the missing precondition for the place skill. (b) Precondition verification identifies that the grasp skill fails due to an unmet condition,
as the robot is already holding a red object. (c) Postcondition verification detects a failed placement since the blue object is on top of the green object
instead of inside. Failure detection (red), identification (orange), and correction (blue) are indicated with corresponding VLM responses in black.

blue object inside green object? Sequence

place blue object!grasped blue object?

Fallback

Fig. 3. BT of the peg-in-hole task without failure handling

blue object inside green object? Sequence

place blue object!Fallback

grasped blue object? Sequence

grasp blue object!Fallback

~grasped any object? place any object!

Fallback

Fig. 4. Extended BT execution where a missing precondition is added,
ensuring the gripper is empty before grasping target object.

blue object inside the green object, while red and black

objects act as obstacles. Figures 2 and 5 illustrate different

failure types with VLM responses. These figures also show

various prompts, color-coded to distinguish between failure

detection, identification, and correction questions posed to

the VLM 1. From here onward, we will consider a BT

for peg-in-hole task execution that does not yet account for

failures, as shown in Figure 3, unless specified otherwise.

A. Pre-Execution Failure Verification

Before execution [12], we validate the planned BT by

proactively checking for missing preconditions or potential

execution failures. This step prevents errors before they

1Full prompts and code will be released after the submission process.

occur, reducing failures caused by incomplete task knowl-

edge. A GPT-4o-based VLM performs this verification by

analyzing the inputs.

• Detection: Flags anomalies where the planned BT may

fail based on the current scene. For example, in the

peg-in-hole task, if a black cube blocks the hole, the

pre-execution checker detects a potential failure (Fig-

ure 2(a)).

• Identification: Pinpoints the failing skill and the root

cause, whether due to missing knowledge or an incorrect

assumption. In this case, the VLM identifies that the

place skill will fail as the BT does not ensure the hole

is unoccupied before placement (Figure 2(a)).

• Correction: Suggests a missing precondition to update

the BT and prevent failure. Here, the system adds
~occupied(hole) as a precondition for place, prompting

the reactive planner to remove the black cube before

placement (Figure 2(a)).

B. Real-Time Failure Monitoring

While pre-execution verification minimizes failures, un-

expected execution failures may still occur due to sensor

inaccuracies, dynamic obstacles, or external disturbances. To

handle these, we introduce a real-time failure monitoring

module comprising a Verifier and a Suggestor. Both mod-

ules use the same inputs as pre-execution verification but

incorporate continuously updated scene graphs, images, and

execution history for improved reasoning.

1) Verifier: Ensures that execution aligns with expected

conditions by performing precondition verification before

execution and postcondition verification after execution.

a) Precondition Verification: Before executing a skill,

the Verifier checks if the skill preconditions hold. Consider

the BT in Figure 4 with an existing ~grasped any object

precondition in this case.

• Detection: Flags an anomaly if the preconditions for the

skill in the BT are unmet. For example, in the peg-in-

hole task, if the robot has already grasped a red object

but needs to grasp the blue object, the verifier detects

an anomaly (Figure 2(b)).This failure can occur if a



(a)

Q: Is the plan correct with no potential failures?
A: No, the plan has a potential failure.
Q: Do we have the necessary skill to deal with failure, If not why?
A: We don't have the necessary skill to remove large red object
     blocking the hole. The current grasp skill cannot grip an object     
     larger than the gripper affordance
Q: Which skill should be added to avoid failure?
A: Add push skill to remove red object. 

(b)

Q: Will the current skill grasp red object! succeed or not?
A: No, grasp red object skill will fail
Q: Why will the current skill fail?
A:The current grasp skill cannot grip an object larger than the gripper 
     affordance
Q: Which skill should be added to avoid failure?
A: Add push skill to remove red object. 

(c)

Q: Are there any missing preconditions that could lead to failure?
A: Yes, place skill has a missing precondition that can lead to failure
Q: Which preconditions are missing and why they can cause failure?
A: Place skill does not have precondition that accounts for the placing
             location to be empty.
Q: Which condition should be added to avoid failure?
A: Add ~occupied(hole) as precondition for place skill.

Fig. 5. The figure illustrates three failure scenarios and corresponding VLM responses. (a) Precondition suggestor: The red object inside the green object
leads the VLM to identify a missing precondition for the place skill. (b) Pre-execution missing skill generation: The VLM identifies the need for a push
skill to remove the red object. (c) Real-time missing skill generation: The VLM suggests generating the push skill during execution. Failure detection (red),
identification (orange), and correction (blue) phases are depicted, with VLM responses in black.

human intervenes after the pre-execution failure check

by manually placing the red object inside the gripper.

• Identification: Determines the violated precondition

and the cause of failure. In this case, it finds that the
~grasped any object precondition of the grasp skill

is not satisfied (Figure 2(b)).

• Correction: Prevents execution by marking relevant

preconditions as unsatisfied. The reactive planner will

then automatically expand the BT to satisfy the marked

preconditions. For instance, the BT adapts by placing

the currently held object before attempting the new

grasp (Figure 2(b)).

b) Postcondition Verification: After executing a skill,

the Verifier checks if expected postconditions hold.

• Detection: Flags an anomaly if the executed skill fails to

meet its postconditions. For instance, if the robot places

the blue object on top of the hole instead of inside, the

verifier detects a failure (Figure 2(c)).

• Identification: Identifies the violated postcondition and

the cause of failure. Here, it finds that the “inside”

condition is violated because the object is on top rather

than inside (Figure 2(c)).

• Correction: Returns Failure, triggering the reactive

planner to adjust execution dynamically. The BT reat-

tempts placement in the next tick (Figure 2(c)).

2) Suggestor: The Suggestor dynamically infers missing

preconditions when a skill fails due to unmet conditions.

• Detection: Flags an anomaly when a skill is likely to

fail due to an unmet precondition. For example, in the

peg-in-hole task, the red object is already occupying the

hole (Figure 5(a)).

• Identification: Identifies the missing precondition and

the cause of failure. In this case, it determines that the

place skill is missing a precondition ensuring the hole

is empty before insertion (Figure 5(a)).

• Correction: Suggests the missing precondition, prompt-

ing the BT to update accordingly. The model suggests
~occupied(hole) as a precondition, allowing the reac-

tive planner to expand the BT accordingly (Figure 5(a)).

C. Skill Addition

While modifying preconditions can resolve many failures,

some cases require introducing new skills. The skill addition

can be suggested either pre-execution or reactively depending

on when the potential failure case arises. The pre-execution

stage implements our prior work in the [12] paper. if no

existing skill can address a detected failure, the system

suggests a missing skill (Figure 5(b)). In the reactive phase,

the VLM checks execution feasibility before executing every

skill. If the current skill is predicted to fail, a missing skill

is suggested to remove the failure (Figure 5(c)).

• Detection: Identifies when the available skills can not

resolve a failure. For example, in the peg-in-hole task,

if a non-pickable object blocks the hole and the system

detects an unresolved failure (Figure 5(b)).

• Identification: Determines the missing capability and

the skill that fails due to this limitation. In this case,

the pick skill fails because the object is non-pickable

(Figure 5(b)).

• Correction: The VLM suggests a new skill to resolve

the failure, ensuring compatibility with the robot’s world

model. The suggestion includes:

– The name of the missing skill.

– A code template defining the skill.

– Predefined preconditions and postconditions.

For example, if a robot cannot grasp an object, the

VLM may suggest a “Push” skill as an alternative,

providing a skill description with predefined conditions

(Figure 5(b)). Figure 5(c) illustrates the reactive version

occurring during execution, where the robot first places

the blue object on the table before executing the ”Push”

skill to move the red object. To ensure consistency,

the system restricts the VLM to known world model

conditions, preventing arbitrary condition generation.

D. Scene Graph Representation

To enable real-time monitoring, our system maintains an

evolving scene graph that tracks spatial relationships between



objects and the robot. Unlike REFLECT [13], which regen-

erates the scene graph from scratch at each timestep, our

approach continuously updates it by modifying relationships

and adding or removing nodes as needed.

The scene graph is constructed using:

• RGB-D images and point clouds for capturing scene

depth and object positioning.

• Grounding DINO [35] for object detection and

SAM2 [36] for instance segmentation and tracking.

• RANSAC and PCA-based pose estimation to estimate

6D object poses.

Continuous updates improve efficiency and ensure exe-

cution consistency. For example, in the peg-in-hole task,

when the robot inserts the blue object into the green one,

our system updates the scene graph by modifying the ”on”

relation to ”inside” without reconstructing the entire graph.

E. Execution History

The execution history maintains a log of skill executions,

condition verification results, and environmental changes.

Instead of explicit failure logging, which assumes perfect

execution state knowledge, our approach captures execution

traces via changes in the scene graph that help infer failures

and inconsistencies.

• Skill execution records: Logs executed skills with

timestamps.

• Precondition and postcondition verification: Tracks

whether preconditions were met before execution and

if postconditions held afterward.

• Scene graph updates: Records object positions and

relationships before and after execution to analyze de-

viations.

For example, in the peg-in-hole task, if the blue peg

is placed on top of the green hole instead of inside, the

execution history logs the ”Place” skill execution with its

timestamp. The system records that the precondition was

satisfied (e.g., the peg was grasped), but postcondition veri-

fication fails as the peg’s spatial relation does not match the

expected ”inside” condition. The scene graph update reflects

this deviation, showing the peg as ”on” rather than ”inside”

the hole.

This structured history enables real-time adaptation by

detecting execution anomalies, allowing the system to refine

failure handling based on observed task progression.

V. EXPERIMENTS AND RESULTS

We evaluate our failure recovery framework through both

simulation benchmarks and real-world experiments. In simu-

lation, we use benchmark tasks from REFLECT [13] in AI2-

THOR [14], assessing how our system adapts to predefined

failure cases. For real-world validation, we implement our

framework on a robotic platform to evaluate its effectiveness

in handling failures in physical environments.

A. Simulation Experiments

We evaluate our framework on REFLECT benchmark

tasks, where failures occur during execution and are cor-

rected post-execution using hierarchical summaries and scene

graphs [25]. However, REFLECT lacks real-time adaptation,

as failures are only detected and corrected after task com-

pletion.

Our approach instead uses a reactive planner and BTs

to dynamically generate execution policies, enabling real-

time monitoring and immediate failure correction. Unlike

REFLECT, which reconstructs a new scene graph per ex-

ecution, our system continuously updates it. Additionally,

while REFLECT relies on LLM-generated post-execution

corrections without correctness guarantees, our reactive plan-

ner ensures correctness through structured preconditions and

postconditions.

We successfully applied our framework to all REFLECT

benchmark tasks, achieving a 100% success rate across

multiple runs. Real-time monitoring was sufficient, making

pre-execution checks unnecessary. The Verifier ensured exe-

cution correctness, while the Suggestor resolved missing pre-

conditions. Unlike REFLECT, which evaluates explanation,

localization, and replanning success, we assess overall task

completion. Since failures are proactively verified and reac-

tively corrected during execution, post-execution replanning

is unnecessary, reducing reliance on retrospective reasoning.

Key differences between REFLECT and our approach are

summarized in Table I.

TABLE I

QUALITATIVE COMPARISON OF REFLECT AND OUR APPROACH

Feature REFLECT Our Approach

Execution Plan Manually designed Reactive BT
Failure Handling Post-execution Real-time

Scene Graph
Update

Reconstructed
post-execution

Maintained
incrementally

Failure Detection Post-execution Real-time
Plan Correction LLM-generated Reactive BT

B. Real-World Experiments

For real-world validation, we deployed our framework on

an ABB YuMi robot equipped with an RGB-D camera. We

assessed its failure recovery capabilities across three tasks:

• Peg-in-hole: Inserting a peg into a hole with varying

initial placements.

• Object Sorting: Sorting objects by color into desig-

nated locations.

• Drawer Placement: Placing an object inside a drawer.

Failures were introduced by modifying object placements,

adding obstructions, or altering task constraints. Addition-

ally, human intervention was used to induce failures during

execution.

1) Baseline Approaches: We compared our approach

against two baselines to assess the benefits of integrating

pre-execution and reactive failure recovery mechanisms:

• Pre-execution: Check for plan verification [12].

• Reactive: Detect and correct failures during execution.



TABLE II

COMPARISON OF FAILURE RECOVERY BASELINES

Metric Pre-execution Reactive
Pre-execution +
Reactive (Ours)

Task Success
Rate 31.25% 100% 100%

Failure Detection
Rate

31.25% 100% 100%

Failure Identification
Rate

100% 100% 100%

Correction Success
Rate

100% 100% 100%

Skill Suggestion
Accuracy 50% 100% 100%

• Our Approach (Pre-execution + Reactive): Combine

pre-execution validation and real-time monitoring to

prevent and correct failures dynamically.

Table II provides a quantitative comparison, showing that

Pre-execution + Reactive achieves the highest performance.

While Reactive matches its failure handling, it is significantly

more expensive due to increased VLM queries, additional

skill executions, and longer execution times. For instance,

without pre-execution checks, a robot may start execution

only to realize mid-task that a required object is missing,

forcing backtracking and reactive correction causing delays

and inefficiencies 2. In contrast, our approach resolves pre-

execution failures proactively whenever possible, reducing

computational and execution overhead. Meanwhile, Pre-

execution has lower accuracy as it addresses failures only

before execution but remains the most efficient, avoiding

costly real-time interventions. This highlights the trade-

off between execution success and efficiency, where pre-

execution handling is computationally cheaper but insuffi-

cient for real-time failures.

2) Evaluation Metrics: We evaluated our framework’s

ability to detect, identify, and correct failures across 16 pre-

recorded failure cases, repeating each experiment 10 times.

To assess false positives, we also ran each task 10 times

without introducing failures.

We measured the system’s accuracy in detecting failures,

correctly identifying their root causes, and successfully cor-

recting them. Additionally, we analyzed the proportion of

pre-execution failures handled versus those requiring real-

time intervention and assessed the accuracy of skill sugges-

tions.

Table II summarizes the performance across these metrics.

Our framework achieved a perfect 100% accuracy on all

tasks, demonstrating strong failure recognition and reasoning

capabilities. No false positives occurred when running the

tasks without failures. Given that failure recovery systems are

designed to achieve near-perfect accuracy, these results align

with expectations. Future work should focus on evaluating

the framework on more complex benchmarks to further

assess its scalability and robustness.

3) Ablation Studies and Summary of Findings: To eval-

uate key components, we conducted ablation studies by

2See the video submission for details.

selectively removing elements and analyzing their impact on

failure recovery.

• VLM vs. LLM: Removing vision input weakens spatial

and scene-aware failure detection, limiting object rela-

tion reasoning. Success drops from 100% (2 images) to

98% (1 image) and 95% (no images), assuming scene

graph accuracy, which is not always guaranteed.

• Scene Graph Contribution: Assists spatial reasoning

and removes scene ambiguity. Without it, success drops

to 91.25%, highlighting its role in structured failure

prediction.

• Execution History Effectiveness: Omitting execution

history tracking did not significantly impact results, as

we observed similar success rates with and without it.

However, this does not imply that execution history is

ineffective; its benefits may become more evident in

more complex benchmarks.

Our findings confirm that combining pre-execution and re-

active failure handling improves task success. Pre-execution

checks prevent plan failures, while real-time monitoring im-

proves adaptability. VLM-based reasoning strengthens failure

detection and correction, and scene graphs with execution

tracking improve system reliability by maintaining structured

environmental context. These results validate our frame-

work’s effectiveness in autonomous failure recovery across

diverse robotic tasks.

VI. CONCLUSION AND FUTURE WORK

This paper presented a unified failure recovery frame-

work integrating VLMs, a reactive planner, and Behavior

Trees (BTs) for pre-execution failure detection and reactive

recovery in robotic execution. By incorporating a scene

graph for structured perception and execution history for

real-time monitoring, our approach dynamically adapts to

failures, minimizing execution disruptions. Experimental val-

idation on an ABB YuMi robot and simulation benchmarks

demonstrated its superiority over using pre-execution and

reactive methods separately. Ablation studies confirmed the

importance of VLMs, structured scene understanding, and

execution summaries in enhancing system reliability.

In the future, we aim to enhance our framework by inte-

grating video and audio inputs for improved context-aware

task monitoring. We plan to fine-tune open-source multi-

modal models for failure handling, reducing computational

costs and improving efficiency. Additionally, we will lever-

age Vision-Language Action (VLA) models for autonomous

skill generation with structured preconditions and postcondi-

tions, ensuring quality through static and integration checks.

To extend real-time monitoring, we will incorporate holding

conditions for proactive failure checking during execution.

These advancements will enhance autonomous failure re-

covery, making robotic systems more adaptable and self-

sufficient.

VII. ACKNOWLEDGEMENTS

We thank Jialong Li for valuable discussions. This work

was supported by the Wallenberg AI, Autonomous Systems,



and Software Program (WASP) through the Knut and Alice

Wallenberg Foundation and by Vinnova (NextG2Com, ref.

no. 2023-00541). Experiments were partly conducted at ABB

Corporate Research Center, Västerås, Sweden, with financial
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