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Abstract. In this paper, we propose an approach that combines Vision
Language Models (VLMs) and Behavior Trees (BTs) to address failures
in robotics. Current robotic systems can handle known failures with pre-
existing recovery strategies, but they are often ill-equipped to manage
unknown failures or anomalies. We introduce VLMs as a monitoring tool
to detect and identify failures during task execution. Additionally, VLMs
generate missing conditions or skill templates that are then incorporated
into the BT, ensuring the system can autonomously address similar fail-
ures in future tasks. We validate our approach through simulations in
several failure scenarios.

Keywords: Robotics, Failure Detection, Behavior Trees, Vision Lan-
guage Models, Recovery Behaviors

1 Introduction

Modern robotic systems can handle complex tasks in controlled environments,
but transitioning into dynamic, small-batch manufacturing introduces new chal-
lenges, especially around failure management. Failures; unforeseen disturbances
that prevent task completion; can lead to costly delays and risks, particularly in
shared workspaces [1]. The ability to detect, identify, and recover from failures
autonomously is crucial for ensuring the robustness of robotic systems.

Traditional failure management strategies in robotics include human inter-
vention, failure analysis [2], and automated recovery strategies [1]. These ap-
proaches have limitations: human intervention is time-consuming, failure anal-
ysis requires expertise, and automated strategies often lack flexibility in han-
dling unforeseen scenarios. Our recent work [3] introduced a novel method using
automated recovery behaviors modeled as robotic skills with parameters, pre-
conditions, and postconditions, executed through Behavior Trees and Motion
Generators (BTMG) policy representation [4]. This approach optimizes recovery
policies using Reinforcement Learning (RL) [5] and also adapts the parameters
to different task variations [6].
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However, two key limitations remain: (1) the system assumes failure detection
and identification are already solved, requiring prior knowledge of the failure, and
(2) it only handles known failures with predefined solutions. These limitations
make it difficult to address unforeseen failures. We propose addressing these gaps
by utilizing Vision Language Models (VLMs) to detect, identify, and generate
solutions for unknown failures. By integrating VLMs with Behavior Trees (BTs),
our approach autonomously monitors task execution, identifies failure states, and
generates missing conditions or skill templates to recover from failures. The BT
is then updated using a reactive planner [7] to handle similar future occurrences.

Main Contributions

– We propose a novel integration of VLMs with BTs for monitoring, failure
detection, identification and recovery in robotic systems.

– We use VLMs to generate missing preconditions or skill templates to address
failures and update the BT policy.

– We conduct experiments to demonstrate the effectiveness of the approach.

2 Background

This section provides essential background concepts to our proposed approach,
focusing on behavior trees, reactive planner and vision-based language models.

2.1 Behavior Trees (BT)

Behavior Trees (BTs) are hierarchical models for task execution, known for their
modularity and flexibility [8]. A BT organizes task execution through nodes that
receive tick signals, indicating readiness for execution. BTs consist of two types
of nodes: control-flow nodes and execution nodes. Control-flow nodes manage
execution flow and return statuses of success, failure, or running; examples in-
clude Sequence (AND) and Fallback/Selector (OR). Execution nodes, which are
leaf nodes, represent either skills (”!”) or conditions (”?”). Skills perform spe-
cific tasks, while conditions evaluate the environment, returning only success or
failure. BTs offer modularity and clarity, making them ideal for robotics appli-
cations, particularly in dynamic environments where flexibility is required [9].

2.2 Reactive Planner

Reactive planners generate BTs dynamically, using a backchaining approach to
select skills that satisfy goal conditions [10]. The process iteratively selects skills
based on their preconditions and postconditions, constructing a BT that satisfies
the specified goal. This recursive process continues until a leaf node is reached
or a predefined depth is attained. The planner ensures adaptability by dynam-
ically responding to changes in the environment without requiring extensive
re-planning. This planner has been extended for various applications in [11,12].
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2.3 Vision Language Models (VLM) in Robotics

Vision Language Models (VLMs) are powerful tools in robotics, enabling a
deeper understanding of complex environments by combining visual data with
language inputs. VLMs excel at tasks such as scene interpretation, object recog-
nition, and generating control skills based on visual cues and task descrip-
tions [13, 14]. Recent applications of VLMs in robotics include failure recovery,
task planning, and multimodal reasoning, with systems like ReplanVLM [15]
and AHA [16] demonstrating their ability to reason over failures and generate
dynamic solutions.

3 Approach

We extend the existing framework [3] to handle unknown failures by integrating
VLMs for failure detection, identification and recovery and generate missing
preconditions or skill templates to be incorporated into the BT.
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Fig. 1. Overview of the proposed approach, where the VLM takes a set of images,
skills, conditions, and a BT as input. The VLM uses this information to provide missing
conditions or skills, which are then used to update the BT through a planner.

3.1 Failure Detection and Idenitification

Failure detection refers to the system’s ability to recognize when a task can-
not be completed due to unforeseen errors, such as hardware malfunctions or
environmental disturbances. This can be achieved by using sensor data, such
as from cameras or force-torque sensors, and comparing it against the expected
postconditions of skills. For example, in a peg-in-hole task, if an object blocks
the hole, the system detects this failure when the postcondition of the ”insert”
skill (peg inserted) is not met [1] (see Figure 3).

Failure identification involves describing the failure using existing system
conditions and understanding why the task could not be completed. For instance,
in the peg-in-hole task, the missing precondition when an obstacle is blocking
the hole could be ”Not any obstacle at hole” for the insert skill. This allows the
system to formulate strategies for dealing with similar failures in the future.
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Fig. 2. Comparison of Behavior Trees (BTs). The left side shows the initial BT, while
the right side illustrates the updated BT, with the changes highlighted in red connec-
tions.
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Fig. 3. Scenes showing peg-in-hole task execution with obstacles. The first row (1(a)–
1(d)) illustrates the task with a small obstacle, while the second row (2(a)–2(d)) depicts
the task with a large obstacle.

3.2 Monitoring using VLM

We use VLMs to enable failure detection, identification and recovery (Figure 1).
Before task execution, the VLM is queried with images of the task environment,
the BT structure, and the skills and conditions involved. The VLM then assesses
whether the task will succeed and, if not, identifies the cause of failure (detec-
tion). It also suggests the missing condition (identification) that could prevent
the failure. If the system lacks the required skill to recover from a failure (re-
covery), the VLM suggests an appropriate recovery skill based on the provided
library of existing skills (see Figure 2).

3.3 Condition and Skill Template Generation

When the VLM identifies a missing condition or skill, it updates the BT accord-
ingly. For example, if a small obstacle blocks the peg, the condition ”hole free” is
generated and added as a precondition to the ”insert” skill. The reactive planner
regenerates the BT by incorporating this condition, ensuring similar failures are
handled in the future [7]. If a recovery skill is missing, the VLM generates an



Addressing Failures in Robotics 5

skill template that follows a structured format and requires some manual inputs
to complete. For instance, if a large object blocks the peg hole and the gripper
cannot grasp it, the VLM suggests a ”push” skill template to remove the ob-
stacle (see Figure 3). This template is added to the BT, and in the future, this
process could be fully automated, allowing the system to autonomously recover
from failures.

4 Experiments

We validated the proposed approach using simulations in robosuite [17] and Ope-
nAI’s GPT-4. The experiments were designed around three tasks, each involving
unknown failures:

– Peg-in-Hole Task: Two scenarios—(A) a small obstacle inside the hole, and
(B) a large obstacle positioned in front of the hole.

– Lift Task: An additional cube is placed on top of the target object, creating
an unforeseen failure.

– Door Opening Task: The robot attempts to open a door but lacks the pre-
condition that the handle must be turned first.

5 Evaluation Metrics and Results

We evaluated the VLM’s performance using three key metrics: consistency in
failure detection and recovery, the importance of vision input, and skill feasibility
considerations (ensuring that suggested skills, such as a ”grasp” skill, are feasible
based on the gripper’s affordance and object location). For all experiments, we
used model parameters of temperature and top_p set to 0.1, which resulted in
more deterministic and focused outputs, reducing randomness and ensuring that
the model consistently chose the most likely responses.

– Consistency of Failure Detection and Recovery: The VLM’s reliability
was tested across 10 trials per scenario, consistently detecting and recovering
from failures in all tasks, achieving 100% consistency.

– Vision Importance Ablation Study: To assess the impact of visual input,
we compared VLM (with visual input) and LLM (without visual input). In
the Peg-in-Hole (small obstacle), Lift, and Door Opening tasks, both models
achieved 100% accuracy. However, in the Peg-in-Hole (large obstacle) task,
the VLM achieved 100% accuracy, while the LLM reached 30% accuracy
without skill feasibility considerations and 60% with feasibility checks.

– Skill Feasibility Considerations: When skill feasibility is considered,
LLM performance improved but still fell short of the VLM. The VLM ex-
celled in complex scenarios like the Peg-in-Hole (large obstacle) task, gener-
ating feasible recovery skills autonomously.
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6 Conclusion and Future Work

In this paper, we introduced a method for integrating Vision Language Mod-
els (VLMs) with Behavior Trees (BTs) to autonomously detect, identify, and
recover from failures in robotic systems. By generating missing conditions and
skill templates, the system can effectively handle unknown failures and adapt
its execution policy for future tasks. Future work will focus on several key areas:
expanding the range of failure scenarios to include more complex and dynamic
environments, improving the skill generation mechanism to move from generat-
ing skill templates to directly producing feasible skills, thereby reducing manual
input. Additionally, we aim to fine-tune an open-source model to further enhance
the system’s performance and adaptability across diverse robotic tasks.
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